
Student: Dennis Verslegers
Promotor: Prof. dr. Yuri Bobbert

Lean
security
A framework of security activities and
design factors for DevSecOps

Foreword by Jez Humble

THESIS

Dennis Verslegers

Dr. Yuri Bobbert

Antwerp Management School

MASTER OF SCIENCE

Lean security
Submitted for the degree of

IT Governance and Assurance

by

at the

May 2020

with promotor

Noteworthy accomplishments are rarely achieved alone. A tremendous group of people have,
directly or indirectly, contributed to allow me to start and finish this research project. So many that I
risk not mentioning some of them, I apologise in advance. I would like to express my gratitude and
say thank you …

To my father who did not live to see this moment and would probably never have thought it to be
possible,

To my mother who was always convinced that anything was possible, contrary to the odds, and
thereby gave me the confidence to take chances in life,

To my wife and daughter for putting up with me during stressful moments and supporting me
through this 2 year journey, it takes sacrifice to allow someone to chase their dreams and aspirations.
I hope to be able to do the same for the both of you.

To my promotor, for his support throughout this research project. His enthusiasm and dedication
have made this project that much more ambitious by challenging me and asking critical questions at
the right time. I’m grateful for your support and dedication.

To each of the 20 experts who contributed to this research, they dedicated a significant part of their
valuable time and were the ones who made this research possible. Without their answers to the
surveys, interviews and online sessions or review of this paper there would be nothing to write about.
I could have never expected such voluntarism and I am grateful for that. I will follow your example and
seek to contribute to other peoples projects in the same enthusiastic way you supported mine.

Master thesis
Lean security

Master thesis
Lean security

Master thesis
Lean security

Master thesis
Lean security

Foreword
A key goal of DevOps is to increase software delivery velocity while also improving service reliability.
However many of the practices that enable these outcomes require significant shifts in the ways
teams deliver software. In particular, software has traditionally been released infrequently in large
batches, with QA and security reviews happening after development is complete.

A significant change has been the adoption of continuous delivery, in which teams ensure the
software is always in a releasable state. That means teams performing testing and other activities
traditionally performed downstream of development as part of the development process.

This new way of working requires changes in process, training, skills, and organizational culture for all
roles, including information security. However the marriage of DevOps and information security,
while ever more critical in today’s world of botnets and advanced persistent threats, has received
relatively little attention in the academic literature.

Dennis Verslegers’s work addresses this gap. Using the literature and input from experts, he has
produced a library of practices that can be used to achieve important control objectives which are
designed to complement modern ways of working, and assessed their effectiveness, impact on
delay, and financial consequences, as well as considering relevant design factors.

This work represents an important and valuable contribution which will help organisations as they
redesign information security and governance, risk and compliance in a continuous world. When
applied well, this should help organisations improve their security posture even as they deliver
software more rapidly and reliably - a win-win for everybody.

Jez Humble,

Author of the Jolt Award-winning Continuous Delivery,
Lean Enterprise and co-author of The DevOps Handbook.

Master thesis
Lean security

Master thesis
Lean security

Table of contents
Part one: drivers & approach 1

Background 1

Problem statement 4

Main research question 7

Selection of research methods 7

Design problems and knowledge questions 9

Research approach 11

Research deliverables 12

Part two: Research 15

Academic literature review 15

Searching the knowledge base 15

Analysis of the dataset 19

Validation and prioritisation of the research findings 25

Preparations 25

Validation and elaboration of findings by expert panel 27

Prioritisation by expert panel 34

Part three: Analysis 39

Collaboration 40

Performing continuous feedback from production to development 40

Provide security training 42

Establish security satellites 44

Practice incident response 46

Establish a security mindset across the organisation 47

Use of non-automated activities 48

Performing security requirements analysis 48

Performing threat modeling 50

Performing risk analysis 53

Establishing security SLA's for cloud providers 55

Performing continuous assurance 57

Introduction
The digital world is an important playing field in this era of innovation and business transformation.
Meeting market demands requires continuous change to digital platforms. The speed with which this
change can be delivered is detrimental for the competitive advantage of an organisation. To satisfy
the demand for speed and agility new ways of organising work are explored and gaining in
popularity rapidly. As software becomes an integral element of business growth the focus on fast
delivery of features with a tangible business value has increased. Organisations want the ability to
seize opportunities without being stopped in their tracks.

Increasing pressure from regulators and a decreasing tolerance for security breaches by customers
is reducing the risk appetite of key stakeholders and investors. Business value is only achieved if it is
done in a reliable and secure way. This leads to increasing attention for secure business value
creation.

The challenge which presents itself is increasing the security characteristics of our digital platforms
without sacrificing speed and agility. The security industry often states that rapid change increases
security risk. This does not necessarily hold true as security itself benefits from the ability to
implement changes quickly. It allows a system to react to newly discovered vulnerabilities and the
ever changing threat landscape. What is considered secure today may not necessarily hold true
tomorrow. The only way to safeguard business value is through rapid change.

The outcome of this research aims to provide a framework of validated security activities for
DevSecOps environments ranked by their characteristics to improve security without sacrificing
speed and agility. This framework should allow organisations to build a “lean” approach to security.

Master thesis
Lean security

Master thesis
Lean security

Performing manual security testing 59

Secure the CI/CD pipeline 62

Use of automated activities 64

Performing automated security testing 64

Performing continuous monitoring 70

Implement automated remediation 78

Performing security configuration automation 80

Implement secrets management 81

Manage digital supply chain 82

Part four: Results 87

Answers to research questions 87

Conclusion 93

Limitations 96

Future research 97

Appendices 1

Appendix A: Literature review notes 2

Appendix B: Thematic analysis mapping table 9

Appendix C: thematic analysis details 34

Thematic analysis on security activities 34

Thematic analysis on design factors 35

Appendix D: Expert interviews 39

Interview 1: Cyber Security Designer 39

Interview 2: Cyber Security Designer 41

Interview 3: DevSecOps advisor 43

Appendix E: knowledge nomination worksheet 45

Appendix F: analysis of expert elaborations 47

Appendix G: Results of prioritisation by experts 51

List of figures 56

List of tables 57

References 58

Credits 62

1Master thesis
Lean security

Part one: drivers &
approach

This part of the paper provides an overview of the drivers and approach for this research project. It
consists of the following sections:

• Background: specifies the context in relevant to this research project

• Analysis of the dataset: presents the results of the thematic analysis applied on the identified
gold-set

• Validation of the research findings: presents the results of the expert validation & elaboration and
the expert prioritisation sessions

Background
Software application development and IT infrastructure operations have undergone rapid change
over the past decade [1]. One of the most discussed changes is the gradual shift from traditional,
longer running, procedural approaches to dynamic and iterative processes [2].

An important driver for this change is the agile development approach as proposed by the manifesto
for agile software development. The Agile Manifesto [3] defines the following core principles: (a)
people and interactions over processes and tools, (b) working software instead of detailed
documentation, (c) active customer participation and involvement rather than time and effort
expended on negotiating contracts, and (d) willingness and ability to take on changes over steadfast
commitment to a static plan.

As stated by Abrahamsson et al. [4] the main focus of light and agile methods are simplicity and
speed. A simplified comparison between procedural, also referred to as waterfall, and agile software
development practices is depicted below.

“Conventional assurance methods, applied naïvely,
would create deterring delays between critically short

iterations as well as prohibitively inflate the
development budgets.“

Beznosov & Kruchten, 2004 [14]

DevOps, being a combination of people, process and technology, [3] employs a set of technical
practices referred to as continuous deployment (CD). CD practices include a few key processes:
version control, continuous integration, test automation and deployment automation [2].

Adoption of these Continuous Deployment practices plays an important role in the software delivery
process and may result in increased organizational performance through improved IT performance
[2]. An important objective of Continuous Delivery is to reduce the risk of failure in production and
gather fast feedback by integrating the various software components early in the cycle to produce
deployable results with a high level of certainty [13].

With the evolution described above, where agile iterative approaches are implemented in an
increasingly rapidly evolving technological landscape aimed at increasing speed of deployment, the
question rises how information security can be integrated.

How can aspects such as regulatory compliance and security assurance on key characteristics such as
confidentiality, integrity, availability be considered in this fast paced approach to enable reliable
value creation with a managed level of risk? Simply put, one might argue that it does not matter how
fast an organisation is capable of developing and deploying software if security and compliance
cannot keep up. Eventually the organisation is expected to face security and compliance related
challenges or may have to accept an increased level of risk.

32 Master thesis
Lean security

Master thesis
Lean security

The impact of these simple tenants has not been limited to development teams. New demands are
placed onto operations teams as a result of the changes in development approach [5]. The paradigm
shift to focus on small, iterative software deliveries at a high pace adds dynamic complexity to IT
operations. Speed in terms of software development translates into a need for fast deployments with
a short delta time between release and availability in the production environment [2].

The introduction of agile methodologies in an organisation brings, besides the numerous benefits,
also some challenges. From a process perspective some of these challenges include areas such as
functional and non-functional requirements identification, tracking of projects, quality management
and risk management [6]. Traditional decision-making strategies such as hierarchical approval or
review by a technical board no longer fit the increased speed with which development and
operations are moving resulting in delegation of authority and end-to-end responsibility for the
various teams [7].

At the same time technological advances such as as infrastructure-as-code [8], containerisation and
micro-services [9] require specific skills and knowledge to realise their full potential [9].

A close integration of the operations team with the development team, allowing them to collaborate
early in the development cycle, is placed forward as an approach to meet these challenges and
reduce friction [11][15]. This approach is commonly referred to as DevOps. Finding a complete and
accurate definition of the term DevOps is difficult, for the purpose of this paper we will adopt the
definition as provided by Jabbari et al. [10]:

“DevOps is a development methodology aimed at bridging the gap between Development and
Operations, emphasising communication and collaboration, continuous integration, quality

assurance and delivery with automated deployment utilising a set of development practices.”

During a survey of Computer Associates 88% of executives across 1425 organisations indicated to
have adopted DevOps or to plan adoption in the next 5 years [12].

“... It may not not matter how fast we can deploy an application in production if security and
compliance cannot keep up ...“

Figure 2: Relationship between continuous integration, delivery and deployment according to M. Shahin et al. [5]Figure 1: Comparison between the typical process steps in waterfall and agile development as explained by Abrahamsson et al. [4]

54 Master thesis
Lean security

Master thesis
Lean security

Problem statement
Software security assurance aims to provide confidence in the security-related properties and
functionalities, as well as the operation and administration procedures, of a given piece of software.
Assurance methods are key to achieve confidence that a solution meets its security requirements.
Conventional, sequential, security assurances approaches rely on a third party’s objectivity and
expertise resulting in a side-effect, documentation-focused development, which is in conflict with
agile development methods [14]. In this context third parties are defined as security specialists
coming “after the show” who are expected to analyse, validate, test and then certify if a more or less
finished product meets its security requirements [14]. Research points out that approximately half of
the conventional assurance methods and techniques directly clash with the principles and practices
of agile development. Most of these techniques create a mismatch due to their reliance on extensive
documentation served as a subject of analysis, verification, and validation activities [14].

Many organisations want to apply DevOps, but they are concerned by the security aspects of the
produced software [20]. The importance of embedding security assurance in the DevOps process is
reflected by the results of a survey on DevOps adoptions and expectations [16] where 28% of the
respondents indicate that security and compliance are seen as obstacles to adoption. Increasing
regulatory compliance requirements [28] and the potential impact of breaches on the market value
[29] and reputation [30] of organisations could be expected to increase these concerns.

In organisations with a strong emphasis on security the security teams can be expected to be
important stakeholders in the adoption of DevOps methodologies which requires the integration of
security assurance aspects to gain their buy-in [17]. This is not without reason because without
adequate involvement of the security team, rapidly deployed software changes are more likely to
contain vulnerabilities due to lack of adequate reviews [12].

Where the previous aspects highlight the interest in the integration of security assurance in DevOps
from the perspective of preventing negative side effects from occurring there are also some
aspirational aspects to the proposed integration. Studies linking DevOps (which is a core principle of
DevOps) to organisational performance [18] also point out that the automation of security policy
configurations is “mission-critical to reach the highest levels of DevOps evolution” and mentions that
the “involvement of security teams in technology design and deployment” should be viewed as an
important practice. A recent “State of DevOps report” [61] explicitly mentions that integrating security

“The (conventional) assurance methods, applied naïvely, would create deterring delays
between critically short iterations as well as prohibitively inflate the development budgets.“

Beznosov & Kruchten, 2004 [14]

throughout the software delivery lifecycle leads to positive outcomes such as their ability to deploy
to production on demand at a significantly higher rate.

There is also an inverse effect where doing DevOps well enables you to do security well [61], the
same principles that drive good outcomes for software development such as culture, automation,
measurement and sharing are similar to those that drive good security outcomes. Automation is also
linked to increased speed of response to security issues [61]. Therefore it can be argued that a strong
DevOps culture also supports stronger security.

These aspects are drivers for the tight integration of security into the DevOps, a practice which is
commonly referred to as “DevSecOps” or “SecDevOps” [20]. DevSecOps as a concept proposes
solutions to improve security on the three dimensions of DevOps namely people, process and
technology [21].

An example of the mindset found in DevSecOps is expressed in the Rugged Software manifesto [22]:

“Rugged” describes software development organisations that have a culture of rapidly evolving
their ability to create available, survivable, defensible, secure, and resilient software.

A concept frequently cited in the context of DevSecOps is “shift left on security” [23][24][25][26]. It
refers to the principle of integrating security related activities as early as possible in the process
because the cost and time required to identify and remediate issues as an application advances
through the various development stages increases significantly [27]. At its core “shift left on security”
advocates delegating authority and coaching of all contributors in the process to integrate security
in their work allowing the security team to focus on support in specific complex cases.

Figure 3: Mapping of IATF Information System Security Engineering Process (ISSE) to waterfall and agile process steps

76 Master thesis
Lean security

Master thesis
Lean security

The question which rises is how to integrate security assurance activities in DevOps, thereby
leveraging its strengths to increase the security posture of the produced software and providing
increased speed of response [61], without introducing delays between critically short iterations [14].

To achieve this organisations are in need of a framework of relevant security activities enabling an
organisation to integrate security assurance in DevOps with a clear view on the effectiveness as well
as the delay caused in the process of continuous delivery.

Companies could benefit from a framework to effectively and efficiently embed security
activities in DevOps.

Main research question
The focus of this research is to establish a framework to effectively integrate security assurance
activities in DevOps without sacrificing speed and agility. To meet this objective the framework needs
to take in to account the factor of delay caused to the development and operations processes.
Therefore the main research question is defined as follows:

Which set off security activities are applicable to DevOps and how do they relate to the
perspectives of effectiveness and delay caused in the process of continuous deployment?

The outcome of this question allows the design of a framework for lean security which integrates
security in DevOps without sacrificing speed and agility by providing an overview of the relevant
security activities and their characteristics in terms of effectiveness and delay caused to the process
of continuous deployment.

Selection of research methods
The topics of DevOps and DevSecOps are on the vanguard of information technology and therefore
are subject to constant and fast evolution. Recent academic papers refer to DevOps as being a novel
concept [10] and point out that the number of relevant publications on DevSecOps is low [20].
Therefore the choice was made to perform an exploratory research project with the intention to gain
familiarity with the concept of lean security, aim to generate new insights and return these insights to
the body of knowledge.

Design science combines behavioural science and design science based on the premise that this
combination is most suited to address fundamental problems faced in the productive application of
information technology. It also stated that technology and behaviour are inseparable in IS research
[31]. This premise aligns with a general consensus in the proposed research domain of this paper, it
is believed that both DevOps and Information Security become effective only through the
combination of process, technology and people [3][21].

The objective of this master thesis is to develop the specifications of an artefact detailing a set of
security activities applicable to DevOps and their characteristics in terms of effectiveness and delay
caused in the process of continuous deployment.

This artefact proposes an initial solution to the problem of integrating security in DevOps and as such
contributes to the body of knowledge. Therefore, design science methods are selected as the basis
for this research. Design science methods are described by Hevner et al. as follows [31]:

7Master thesis
Lean security

Figure 4: Visualisation of the “shift left on security” concept based on the premises of [23] and [27]

“A research paradigm in which a designer answers questions relevant to human problems via the
creation of innovative artefacts, thereby contributing new knowledge to the body of scientific

evidence. The designed artefacts are both useful and fundamental in understanding that problem.”

As described by Recker [32] design science starts from the existing knowledge base to provide the
material through which design science research is accomplished thereby achieving rigour. This
knowledge may consist of existing theories from science and engineering, specifications of currently
known design, useful facts about currently available products, lessons learned from the experience
of researchers in earlier design science projects, and plain common sense [33].

Subsequently the researcher engages in a relevance cycle to bridge the environment of the research
project with the design science activities thereby providing relevance in the application domain. At
the heart of design science is the design cycle which iterates between the core activity of building
and evaluating the design artefacts.

Wieringa indicates that additional research may be required in cases where current scientific research
does not provide an answer [33]. The research domain selected for this project is on the vanguard of
technological and cultural practices in the field of secure information systems development and
operations in agile environments. As a result, knowledge on this subject is constantly evolving and
therefore encourages us to employ techniques that facilitate knowledge gathering based on expert
experience to generate new insights.

An approach to generating new insights is the use of Group Support Sessions. They facilitate the
effective collection, organisation, evaluation, cross-impact analysis and reporting of data [34]. Group
Support Sessions have been proposed as a qualitative research method in the decision-making
process within the domain of Business Information Security (BIS) due to the stimulation of free-
flowing discussion and sharing of experiences eliciting the views of all participants. Previous studies
state that GSS provides a solution to the problem of capturing and sharing knowledge and as such
can be used to feed decision making [34].

A similar combination of design science research methods and Group Support Sessions for
exploratory research have been applied in previous research to derive prioritised lists of items in the
field of information security [35].

Based on the need for this research project to elicit the views of practitioners and a similar need to
provide a prioritised list of items the choice was made to apply GSS. As a result this research will
employ a combination of techniques to interact with experts: (a) surveys, (b) interviews and (c) group
support sessions.

Design problems and knowledge
questions
Wieringa emphasises the need to distinguish design problems from knowledge questions [33].
Design problems call for a change in the real world and are solved through a design which is
evaluated by its utility with respect to the stakeholder goals. There is not one single best solution.
Knowledge questions on the other hand ask for knowledge about the world as it is. The answers to
knowledge questions are evaluated by truth, independent of stakeholder goals. Therefore, Wieringa
emphasises the importance to make a clear distinction between knowledge questions and design
problems as they need to be treated, and more importantly evaluated, differently. To this end a goal
structure for design science research projects is proposed [33].

This proposed structure is applied to the research design for this paper. As stated earlier this research
aims to address the need to integrate security activities in DevOps. The objective is therefore to
specify an artefact enabling the integration of security activities in DevOps with limited friction (a1).

To this end the following knowledge goals are identified: (k1) definition of the terms DevOps and
DevSecOps, (k2) identification of relevant activities and design factors for DevSecOps, (k3)
framework of security activities and design factors considered relevant in DevSecOps according to
DevSecOps experts and (k4) prioritised framework of security practices, activities and design factors
in DevSecOps according to experts. Two instrument design goals are required to facilitate the
gathering of information for the knowledge goals: (i1) construct survey to perform expert validation
and elaboration on the list identified in K2 and (i2) construct survey and GSS prerequisites to perform
ranking of framework established in K3.

Figure 5: Overview of design science as defined by Hevner [37]

98 Master thesis
Lean security

Master thesis
Lean security

Figure 6: Schematic overview of the structure for this research

1110 Master thesis
Lean security

Master thesis
Lean security

Research approach
A clear definition of the terms DevOps and DevSecOps contributes to the reusability and
comparability of the results of this study. Therefore the starting point for this research consists of
establishing a clear definition for the core concepts referred to in this paper (k1). To achieve this the
definitions of DevOps and DevSecOps gathered from literature will be presented to a group of
security experts through a survey for validation. The related research questions for this goal are:

RQ1a: What is the definition of DevOps?

RQ1b: What is the definition of DevSecOps?

A two-step process is applied to gather a list of activities and design factors which are considered
relevant for DevSecOps (k2). The first step consists of the identification of security activities
applicable in the context of DevOps through literature review of academic literature. During the
literature review publications from a period of multiple years will be included to ensure a broad
coverage (2015-2020). In a subsequent step the findings of this literature review are listed in a
structured way by grouping the security activities that exhibit similar purposes and/or advocate
similar notions through the use of thematic analysis as described by Nowell, Norris, White et al. [38].
This activity enables us to answer research question 2:

RQ2: Which set of security activities and design factors relevant to DevOps processes can be
distinguished from academic literature?

Subsequently the identified list of security activities and design factors will be validated through a
survey by a group of DevSecOps experts. This step reduces the risk of inaccuracy introduced by
researcher bias and ensures the results of this study incorporate a recent state in the domain of
DevSecOps. By relying on the experience of the expert group we achieve a framework of security
activities which is relevant to the field (fit for purpose).

The subsequent research question aims to place the identified security activities into context by
ranking them based on effectiveness and the friction they introduce. To achieve this a Group Support
System (GSS) workshop is organised with security experts to determine which security activities are
effective for security in DevOps.

To perform these GSS sessions necessary prerequisites (I2) such as agenda and group composition
have been developed. The Group Support Sessions are performed using a sufficiently sized group of
information security professionals to ensure reliability and replicability of results. From literature it
was observed that there is no ‘ideal size’ for a focus group however selection the right (number of)
experts is key to obtaining collective intelligence. Also the number of items to be discussed is an
important variable in the setup of the meeting [34]. The GSS session elicits the view of experts in the
field of security and DevOps thereby answering the third research question:

Legend

Kx Knowledge goal
Ix Instrument design goal
Ax Artefact design goal

Figure 7: Schematic overview of the research design

RQ3: How do the identified security activities rank in terms of effectiveness and delay from a
practitioner point of view?

Research deliverables
The knowledge obtained through this research allows us to design an artefact to enable the
integration of security activities in DevOps while minimising friction (a1). This artefact consists of a
framework of security activities and design factors relevant for DevOps according to experts which
can be used to assess the maturity of, or select the approach approach, to a DevSecOps process.

The final step of the design cycle includes the construction and (iterative) evaluation of the artefact to
provide evidence of utility in the stated problem context. This step is considered out of scope of this
research due to time constraints and is proposed as a topic for future research.

1312 Master thesis
Lean security

Master thesis
Lean security

Part two: Research

This part of the paper contains the outcome of the research as described in part one. It consists of the
following sections:

• Academic literature review: presents the outcome of the literature review

• Analysis of the dataset: presents the results of the thematic analysis applied on the identified
gold-set

• Validation of the research findings: presents the results of the expert validation & elaboration and
the expert prioritisation sessions

Academic literature review
Searching the knowledge base

During this research emphasis is placed on the generation of progressive insights into security
activities relevant in the context of DevOps. Therefore this research is exploratory in nature which is
reflected in the choice to apply the forward search method for the academic literature review. A
forward search attempts to identify relevant papers to the research domain and to follow their
citations to discover newer insights.

The preliminary investigation in the scope of producing the research proposal pointed out that
finding a clear definition for the terms DevOps and DevSecOps through literature review is
challenging (RQ1) [10]. Therefore it was decided to retain the definitions identified during the
preparatory phase of this project and to request validation by the DevSecOps experts during the
validation and elaboration step. The definitions are:

• DevOps: “DevOps is a development methodology aimed at bridging the gap between
Development and Operations, emphasising communication and collaboration, continuous
integration, quality assurance and delivery with automated deployment utilising a set of
development practices.” [10]

1514 Master thesis
Lean security

Master thesis
Lean security 15Master thesis

Lean security

“Measuring the level of security in a given piece of software is notoriously difficult,
and instead it has been argued that the next-best thing is to measure second-order

effects, i.e., measure the software security activities that are performed by the
developers as part of the development process”

Jaatun, M., Cruzes, D., Luna, J. [42]

Figure 8: Schematic overview of the literature research
• RuggedOps (DevSecOps): “Rugged” describes software development organisations that have a

culture of rapidly evolving their ability to create available, survivable, defensible, secure, and
resilient software [22]

To answer the second research question (RQ2), and achieve knowledge goals K1 and K2, an initial
search against the “Web of Science” database is performed based on the keywords ‘DevSecOps’,
‘SecDevOps’ and ‘Security in DevOps’. A query against these keywords in the title, written in English
and published between 2015 and 2020 was constructed to identify relevant papers.

The initial search, the results of which can be consulted in table 1, yielded a total of 10 results out of
which 9 consisted of academic papers and 1 editorial note. The identified papers are all related to
the domain of “Computer Science” and were published in 2016, 2017 and 2019.

While reviewing the artefacts resulting from the initial search, a paper published by Rahman &
Williams [12] was identified providing a list of security practices within DevOps. This paper is
considered relevant to this research as it relates directly to research question RQ2a. During their
study the researchers analysed a set of 60 Internet artefacts and interviewed representatives of nine
organisations to explore experiences in utilising security practices.

The results of their research identified 4 security practices and 15 related activities which are relevant
in the scope of security in DevOps. The keywords for the initial search were extended to include the
keywords used during the research of Rahman et. al. [12] to allow alignment with previous studies.
The new extended list of keywords became: ‘DevSecOps’, ‘SecDevOps’, ‘Security in DevOps’,
‘RuggedOps’, ‘SecOps’, ‘Security in Continuous Delivery’, ‘Security in Continuous Deployment’.

A new search using this extended list of keywords using the same criteria against the “Web Of
Science” database did not yield any new relevant papers.

The fast-moving nature of this research domain requires us to pay specific attention to include results
from recent findings. Therefore a third search iteration is performed using the forward search
technique against the previously identified papers to increase coverage and identify more recently
published papers. The forward search yielded 8 additional results results, 3 publications from 2019,
4 of 2018 and 1 of 2017. The complete results of the literature review can be consulted in table 1.

Along the duration of this study peers and professors provided additional relevant publications.
These papers were also included in the literature review and have been marked as “A” in the literature
review search results table.

1716 Master thesis
Lean security

Master thesis
Lean security

ID Title Author(s) Year Iteration

P1
Self-Service Cybersecurity Monitoring as
Enabler for DevSecOps

Jessica Diaz, Jorge E. Perez, Miguel A.
Lopez-Pena, Gabriel A. Mena, Agustin
Yague

2019 1

P2
Software Security Activities that Support
Incident Management in Secure DevOps

Unknown, Martin Gilje Jaatun 2019 1

P3
Security Assurance in DevOps methodologies
and related environments

Grzegorz Siewruk, Wojciech Mazurczyk
& Andrzej Karpiński

2019 1

P4
Software Security in DevOps: Synthesizing
Practitioners' Perceptions and Practices

Akond Ashfaque Ur Rahman, Laurie
Williams

2016 1

P5 DevSecOps: A Multivocal Literature Review Myrbakken, H; Colomo-Palacios, R 2017 1

P6
SecDevOps: Is It a Marketing Buzzword?
Mapping Research on Security in DevOps

Mohan, V; ben Othmane, L 2016 1

Table 1: Literature review search results

ID Title Author(s) Year Iteration

P7 Security Practices in DevOps Rahman, AAU; Williams, L 2016 1

P8
Dynamic Security Assurance in Multi-Cloud
DevOps

Rios, E; Iturbe, E; Mallouli, W; Rak, M 2017 1

P9 Francois Raynaud on DevSecOps Carter, K 2017 1

P10
DevOps for Better Software Security in the
Cloud

Jaatun, MG; Cruzes, DS; Luna, J 2017 1

P11
A systematic mapping study of infrastructure
as code research

Rahman, A; Mandavi-Hezaveh, R;
Williams, L

2019 3

P12
Threat analysis of software systems: A
systematic literature review

Tuma, K; Calikli, G; Scandariato, R 2018 3

P13
DevOps in practice: A multiple case study of
five companies

Lucy Ellen Lwakatare, Terhi Kilamo,
Teemu Karvonen, Tanja Sauvola, Ville
Heikkilä, Juha Itkonen, Pasi Kuvaja,
Tommi Mikkonen, Markku Oivo, Casper
Lassenius

2019 3

P14
Service level agreement-based GDPR
compliance and security assurance in
(multi)Cloud-based systems

Rios, E; Iturbe, E; Larrucea, X; Rak, M;
Mallouli, W; Dominiak, J; Muntes, V;
Matthews, P; Gonzalez, L

2019 3

P15

A Scaffolding Design Framework for
Developing Secure Interoperability
Components in Digital Manufacturing
Platforms

Fraile, F; Flores, JL; Anaya, V; Saiz, E;
Poler, R

2018 3

P16
Scaling Agile Software Development to Large
and Globally Distributed Large-scale
Organizations

Fraile, F; Flores, JL; Anaya, V; Saiz, E;
Poler, R

2018 3

P17
A Multivocal Literature Review on the use of
DevOps for e-learning systems

Sanchez-Gordon, M; Colomo-Palacios,
R

2018 3

P18
Leveraging Cloud Native Design Patterns for
Security-as-a-Service Applications

Torkura, KA; Sukmana, MIH; Cheng, F;
Meinel, C

2017 3

P19
A systematic mapping study on security in
agile requirements engineering

Curcio, K.; Navarro, T.; Malucelli, A.;
Reinehr, S.

2018 A

P20
Security requirements Engineering in the
Agile Era: How does it work in Practice?

Daneva, M.; Wang, C. 2018 A

P21
Effectiveness of using card games to teach
threat modeling for secure web application
development

Thompson, M.; Takabi, H. 2016 A

P22
Continuous Integration, Delivery and
Deployment: A Systematic Review on
Approaches, Tools, challenges and Practices

Mojtaba, S.; Muhammad A.B.; Liming Z. 2017 A

Table 1: (Continued.) Literature review search results Analysis of the dataset

Data analysis is characterised as the most complex phase of qualitative research and therefore
requires a systematic approach which can be transparently communicated to others. Thematic
analysis was selected to analyse the dataset because it ensures a transparent approach while still
being feasible given the time available to perform this research. Thematic analysis is used to
summarise key features of a large data set while forcing researchers to take a well-structured
approach to handling data. This helps to produce a clear and organised final report. A risk when
applying thematic analysis is that its flexibility can lead to inconsistency and a lack of coherence when
developing themes derided from the research data. To improve the trustworthiness of this study the
decision was taken to apply the structured approach for thematic analysis as proposed by Lorelli et
al. [38].

The procedure is both practical and effective and consists of six steps which may be performed in an
iterative fashion: (1) familiarising yourself with your data, (2) generating initial codes, (3) searching for
themes, (4) reviewing themes, (5) defining and naming themes and (6) producing the report. In this
section a detail is provided on how the different steps of this process are applied to this research.

As a first step the researcher is encouraged to read through the complete data set at least once prior
to starting the data analysis. This step aims to ensure the researcher is sufficiently familiar with the
information available in the dataset. During this step all identified papers are loaded and categorised
in a research tool of choice and read through actively. A short summary of the contents and the
rationale for inclusion or exclusion of the paper is written down in appendix A allowing traceability.
The papers identified through the fourth iteration were not included in the initial data analysis
exercise due to their large number. Instead they were used to verify the completeness of the
mapping exercise by reading through them and comparing to the activities and design factors
produced through the thematic analysis.

The next step in the approach involved the definition of an initial set of codes based on the previously
defined research questions. These codes would then be used to label various sections of the papers
allowing a relationship to be identified between the research questions and the information available
in the selected set of papers.

The initial set of codes in table 2 was confirmed by reading through the complete data set to ensure
it allowed to cover the breadth and depth of the information required for this research. In a second
iteration five codes were added to allow capturing and structuring of additional information.

With the codes for thematic analysis defined the next step, where these codes are applied to the
contents of the papers in the dataset, was started. Each relationship between a code and a statement
was added to a mapping table allowing further analysis. The resulting mapping table can be found
in appendix b.

Based on this mapping table the work of reviewing and naming themes starts. As a starting point all
excerpts were loaded into a mind mapping software and grouped by code so that all activities,

1918 Master thesis
Lean security

Master thesis
Lean security

design factors, etc would be grouped together. Subsequently common themes were identified by
grouping the various excerpts into a first level of themes. For some activities the range of activities
belonging to a theme was still too broad necessitating a second level grouping. This lead to the
definition of “level 1” and “level 2” activities where the latter is a more detailed subset of the former.

For instance a theme which quickly became apparent within the activity codes was “manual security
testing”. All excerpts belonging to this theme were then further grouped based on their content
leading to (a) performing manual penetration testing and (b) performing manual security reviews.
This approach was applied to all the excerpts mapped to the “activity” and “design factor” codes
resulting in the set of activities and design factors displayed in tables 3 and 4. A detailed view on the
thematic analysis can be found in appendix c.

Interim conclusion

The results obtained through this activity, as represented in tables 3 and 4, allow us to complete the
second knowledge goal (K2) and as such serves as a starting point to answer the second research
question (RQ2): Which set of security activities and design factors relevant to DevOps processes can
be distinguished from academic literature?

Table 2: Overview of codes used for thematic analysis

RQ Code Description Iteration

RQ2 Principle
A fundamental truth or proposition that serves as the foundation for
DevSecOps

1

RQ2 Practice
A security practice is a collection of activities can be grouped based on
existing similarities within activities

1

RQ2 Activity
A security activity focuses on achieving a small, well-defined goal that has a
tangible output

1

RQ2 Design factor
A specific way a security activity can be performed to increase its
effectiveness or efficiency

1

- Challenge
An obstacle which may impede or complicate the implementation of a
security activity or practice in DevSecOps

2

- Opportunity
An advantage or improvement related to the implementation of a security
activity or practice in DevSecOps

2

- Methodology A system of methods applicable to DevSecOps 2

- Frameworks
A defined and agreed approach that intends to improve security relevant to
DevSecOps

2

- Best practices A repeated method used by people to improve sec in DevSecOps 2

- Tool category
A category of security tools which can be used to implement or facilitate a
security activity

2

Table 3: Results of thematic analysis of security activities

Activity Description

Performing continuous feedback
from production to development

This activity refers to continuously feeding security metrics and information on
security incidents from production back to development.

Provide security training
This activity refers to training a wide range of stake-holders such as developers,
architects and product owners on security aspects.

Establish security satellites
This activity refers to creating a network of security savvy people throughout the
various teams involved in software development. These people are regularly
referred to as security champions.

Practice incident response
This activity refers to practicing incident response through red-team exercises and
security drills.

Performing automated security
testing

This activity refers to aspects of security testing which can be automated thereby
providing actionable information.

Performing automated run-time
testing

This activity refers to the dynamic, interactive testing of a deployed application using
automated tools (DAST)

Performing automated static
testing

This activity refers to code review using automat-ed tools to detect common
vulnerability patterns (SAST).

Integrate security tests in unit
testing

This activity refers to leveraging unit testing to perform security-oriented tests such
as boundary testing.

Performing automated software
composition analysis

This activity refers to the verification of all dependencies (e.g. third-party libraries)
for known vulnerabilities (SCA)

Implement automated remediation This activity refers to the dynamic adaptation and reaction to security incidents.

Implement automation of software
licensing

This activity refers to ensuring that users are purchasing, installing, and using
software as per the conditions set by the software vendor of interest, using
automated tools.

Performing security configuration
automation

This activity refers to automating security configurations (hardening) throughout the
lifecycle of an environment.

Performing security requirements
analysis

This activity refers to the definition of security requirements.

Performing threat modeling
This activity refers to performing threat modeling to establish a common model of
an application and subsequently identifying potential threats.

Performing risk analysis
This activity refers to analysing the threats to an application in the context of the
business impact and likelihood to establish a risk score.

Establishing security SLA's for cloud
providers

This activity refers to establishing security service level agreements for cloud
providers based on the security requirements of a given application.

2120 Master thesis
Lean security

Master thesis
Lean security

Table 3: (Continued.) Results of thematic analysis of security activities

Activity Description

Performing continuous monitoring
This activity refers to actions enabling a continuous view on various security aspects
of development and operations activities.

Performing continuous monitoring
of security SLA's

This activity refers to performing continuous monitoring to confirm compliance with
security service level agreements for cloud providers.

Performing continuous monitoring
of security metrics throughout the
SDLC using CI/CD tooling

This activity refers to leveraging the Continuous Integration and Continuous
Deployment tools to gather security relevant metrics which can be monitored to
identify risks such as coding mistakes or vulnerable dependencies.

Performing continuous monitoring
of system metrics using
automated tools

This activity refers to continuously monitoring metrics such as resource usage and
reaction times. Based on patterns in these metrics malicious activity could potentially
be detected.

Performing continuous monitoring
of security controls

This activity refers to implementing specific monitoring solutions to determine the
effectiveness of security controls for a given application such as SSL settings, access
control mechanisms and vulnerable dependencies.

Performing continuous monitoring
of application behaviour

This activity refers to continuous monitoring of application behaviour such as input
and output to determine changes in patterns which may indicates malicious activity.
This activity is commonly implemented through tools such as Web Application
Firewalls (WAF).

Provide self-service monitoring
capabilities to dev and ops

This activity refers to building monitoring capabilities so that they allow dev and ops
to define the collection of metrics, definition of thresholds and alerts themselves
making it a shared responsibility.

Performing continuous assurance
This activity refers to continuously validating if the software of interest is compliant
with relevant regulatory requirements.

Performing manual security testing
This activity refers to aspects of security testing activities which cannot be automated
and need to be performed manually.

Performing manual penetration
testing

This activity refers to performing manual penetration tests.

Performing manual security review
This activity refers to performing manual security reviews which is usually a
combination of manual code analysis combined with documentation review and
stakeholder interviews.

Performing automated security
testing of the CI/CD pipeline

This activity refers to performing automated security testing of the CI/CD pipeline to
identify weaknesses.

Legend

Activity
A security activity focuses on
achieving a small, well-defined goal
that has a tangible output.

L2 Activity
Detailed security activity which is
derived from L1 activities.

Table 4: Results of thematic analysis of design factors

Activity Design factor

Performing automated Security Testing
Leverage SecaaS by using cloud provided self-managed, automated and
scalable security services

Performing automated Security Testing Integrate the security tools in an automated deployment pipeline

Performing automated Security Testing Automate as many security controls and verifications as possible

Perform automated run-time testing
Perform automated run-time testing at four levels: (1) pre-authentication
scanning, (2) post-authentication scanning, (3) independent backend
scanning and (4) complete workflows

Perform automated run-time testing
Ensure automated run-time testing is implemented for a broad scope of test
scenarios

Perform automated run-time testing Ensure proper unit tests are in place to optimise run-time testing efficiency

Performing automated static testing Minimise the number of false positives resulting from static testing

Performing security requirements analysis Treat security requirements as nonfunctional requirements

Performing security requirements analysis
Leverage metrics gathered during the security requirements analysis phase
to evaluate the security level of alternative designs

Performing security requirements analysis
Enable the evaluation of alternative designs through suitable metrics during
security requirements analysis to determine variations in security levels of a
given design and make appropriate choices

Performing security requirements analysis
Leverage goal-oriented requirements analysis (GORE) to perform security
requirements analysis

Performing threat modeling Perform threat modelling from a risk-centric perspective

Performing threat modeling Perform threat modelling from a attack-centric perspective

Performing threat modeling Perform threat modelling from a software-centric perspective

Performing threat modeling
Ensure compatibility of threat modelling outcomes from a scope and result
perspective

Performing threat modeling Introduce abuse cases and problem frames to perform threat modeling

Performing threat modeling Make use of attack or threat trees to perform threat modelling

Performing threat modeling Implement traceability of threat modelling (results) in the code base

Performing threat modeling Automated threat impact analysis

Performing risk analysis Performing risk analysis continuously before each iteration

Performing risk analysis Performing risk analysis during the design phase

Performing risk analysis
Include a broad range of stakeholders including the business owner when
setting security goals

2322 Master thesis
Lean security

Master thesis
Lean security

Table 4: (Continued.) Results of thematic analysis of design factors

Activity Design factor

Performing risk analysis
Establish clear rules regarding information exchange across teams and
maintain a log for every access to sensitive data

Performing risk analysis
Provide security knowledge and tools and encourage the Development and
Operations teams to integrate themselves

Performing risk analysis Consider gamification for finding vulnerabilities or bugs

Performing continuous monitoring
Ensure continuous monitoring covers a wide range of resources and metrics
including logical security, availability and intrusions

Performing continuous monitoring
Leverage monitoring as code to establish a versioned and repeatable
deployment of monitoring infrastructure

Performing manual security testing
Limit manual penetration testing to critical components or perform in
parallel to reduce impact on deployment lead times

Performing continuous feedback from
production to development

Set a time limit for all lower-priority security defects

Performing continuous feedback from
production to development

Give attack patterns to your developers

Performing continuous feedback from
production to development

Build an internal forum to discuss attacks

Performing continuous feedback from
production to development

Establish emergency code base response

Performing continuous feedback from
production to development

Incorporate security tests as part of QA for detected incidents

Providing security training
Teach every developer enough to enable them to identify areas where they
would benefit from the advice of an expert

Validation and prioritisation of the
research findings
Preparations

This research requires capturing the current state-of-the-art approaches in the fast evolving domain
of DevSecOps. As such this research cannot remain limited to literature review which mainly provides
retrospective insights and often fails to capture new perspectives. To close this gap the choice was
made to include a panel of DevSecOps experts. The insights of DevSecOps experts are leveraged in
two different phases.

In a first phase a group of experts is consulted to validate and elaborate the findings of the literature
research. This allows capturing state-of-the-art knowledge and insights while also reducing
researcher bias thereby contributing in answering research question 2 (RQ2). This is achieved
through a survey and optional structured interview of these experts. The protocol used for this survey
and the results are detailed here.

In a second phase a group of experts has been requested to perform a ranking of the validated
activities in terms of effectiveness, financial impact and delay thereby contributing to answering
research question 3 (RQ3). The ranking-type Delphi method is applied to develop group consensus
about the relative importance in terms of these three aspects for the security practices which were
refined in the previous step.

The Delphi method is described by Linstone and Turoff [39] as follows:

Delphi may be characterised as a method for structuring a group communication process so that
the process is effective in allowing a group of individuals, as a whole, to deal with a complex

problem. To accomplish this “structured communication” is provided: some feedback of individual
contributions of information and knowledge; some assessment of the group judgment or view;

some opportunity for individuals to revise views; and some degree of anonymity for the individual
responses.

Due care has been applied to safeguard the validity of the results increase the confidence in this
study and improve reusability of the results. Validity as defined by Saunders, Lewis and Thornhill [40]
refers to (1) the appropriateness fo the measure used, (2) the accuracy of the analysis of the results
and (3) generalisability of the findings.

When looking specifically at the aspect of measurement validity it is important to ensure the use of
appropriate measures to gather information so that the data obtained gives an accurate reflection of
the actual situation in practice. The exploratory nature of this research combined with the broad
subject domain makes it a complex issue requiring the knowledge from people who understand

2524 Master thesis
Lean security

Master thesis
Lean security

different aspects of security [40]. Therefore it is important to leverage group knowledge, a group of
experts will be able to provide more appropriate answers compared to individual expert’s opinions.

Okoli and Pawlowski point out the importance of selecting appropriate experts as a very important
aspect of the measurement validity of the Delphi method [41]. Therefore their guidelines were
closely followed while preparing the solicitation of qualified experts for both phases of this research.

Table 5 provides an overview of the criteria which were established to identify suitable experts. The
skills requirements are defined broadly to ensure inclusion of experts in various roles and across a
wide range of organisations. This is important for research in such a broad domain due to the wide
range of stakeholders and disciplines involved. As such the background knowledge and the role of
the experts in their respective organisations is expected to play an important role, for instance people
who come from a development background may have a different view compared to someone from
networking or operations teams. Likewise, someone being part of a security architecture team will
have a different view compared to application security engineers.

When looking at the target organisations some differentiators may be hypothesised to result in
different views on Dev(Sec)Ops. These differentiators could be the size, the variation in the level of
regulatory requirements and the amount of legacy technology in the organisation. Therefore a wide
range of potential organisations was included in the selection criteria.

Table 5: Selection criteria for DevSecOps experts

Category Criteria

Disciplines and skills

Academic:
• Published article on the subject matter of agile security, DevSecOps or

CI/CD in peer reviewed academic magazines; OR
• Master or PhD thesis on the subject matter of agile security,

DevSecOps or CI/CD

Practitioner:
• min 5 years of professional experience; AND
• Holding a relevant certification in information security from certifying

bodies such as SANS, ISC2 or ISACA; AND
• Technical experience in a DevSecOps environment and have an

affiliation with security; OR
• Organizational experience structuring people, process or tool aspects

of a DevSecOps environment.

Target Organisations

• Large sized organisations (+1000 employees) in a highly or moderately
regulated sector;

• Medium sized organisations (+250 employees) in a highly or
moderately regulated sector;

• Digital native organisations;
• Government institutions;
• Organisations providing information security services

The knowledge nomination worksheet (KRNW), as found in appendix e, was iteratively populated
with the names of potential experts for participation in this study. In a first iteration potential experts
from personal networks of the researchers and promotors were leveraged to establish an initial set.
Gradually this list was extended by experts proposed by people who were contact for participation
in this survey. Potential academic experts were selected from the list of authors whose papers were
identified during the literature review phase of this research.

All experts on the KRNW were contacted through a formal invitation to request their collaboration for
the first and second phase. The invitations and responses were also included in the KRNW (appendix
e).

Validation and elaboration of findings by expert panel

A total of ten DevSecOps experts responded positively to the invitation for the validation and
elaboration survey. The survey consisted of the following sections:

• Contextual questions: the respondent was asked to answer questions related to his/her role and
the type of organisation in which he/she is active

• Definitions: the respondent was asked to indicate whether or not he/she agreed to the definition
of “DevOps” and “RuggedOps” as found in academic literature

• Activities and design factors: the respondent was asked to indicate for each security activity and
design factor, identified previously (see tables 3 and 4), whether they perceived it as relevant in
the context of DevSecOps. The choices where binary, either an activity or design factor was
considered relevant or not.

The survey was constructed dynamically to limit the strain on the respondents. First the respondents
were asked if they believed a security activity (level 1 activity) was perceived as relevant or not. The
related design factors and more detailed activities (level 2 activity) were only displayed if the level 1
activity was deemed relevant. Otherwise the questions were filtered out. For each activity and design
factor the expert was requested to provide comments and asked to indicate any missing activities or
design factors at the end of each section.

The results of the contextual questions (see table 6) confirmed that the selection of experts was
performed adequately and that the members could be expected to have the required knowledge to
perform the validation and elaboration of the findings. All experts were active in an organisation
which performs in-house development of business strategic applications and nearly all of them have
a DevSecOps team established and are performing continuous deployments.

When asked about their agreement on the terms DevOps and DevSecOps identified earlier the
experts displayed agreement on the term DevOps and DevSecOps with 70% of them agreeing to the
provided definition. The respondents who did not agree with the definition provided a comment to
explain their perspective (table 7). With this our research question RQ1 and related knowledge goal
K1 regarding the definition of DevOps and DevSecOps can be considered answered.

2726 Master thesis
Lean security

Master thesis
Lean security

The survey contained a total of 28 security activities and 35 design factors for which the respondents
were requested to indicate if they perceived the activity or design factor as relevant in the context of
DevSecOps. A technical issue with the survey resulted in 6 design factors (related to risk analysis) not
being displayed to the respondents which were therefore not validated. The results of the survey can
be found in tables 7 and 8.

Overall we see a strong consensus regarding the relevance of the security activities which were
identified through literature review with the exception of “Implement automation of software
licensing”, which receiving only a score of 30% can be considered not relevant to DevSecOps. All

Contextual question 4 7 8 9 10 11 12 13 14 16 %

In which type of organisation are you active? P G P P P P P P P P

Is your organisation performing continuous
delivery?

Yes Yes Yes Yes No No Yes Yes No Yes 80%

Is your organisation performing continuous
deployments?

Yes Yes Yes Yes No Yes Yes Yes No Yes 80%

Does your organisation have a cloud adoption
strategy?

Yes Yes Yes Yes Yes No Yes Yes Yes Yes 90%

Is a Dev(Sec)Ops team established within your
organisation?

Yes Yes Yes Yes Yes Yes Yes Yes No Yes 90%

Is your organisation performing in-house
development of business strategic applications?

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100%

Is your organisation performing outsourced
development of business strategic applications?

No Yes Yes Yes Yes No Yes No Yes Yes 70%

Does your organisation have clearly established
architectural guidelines in the area of DevSecOps or
CI/CD?

Yes No Yes Yes No No No Yes No Yes 50%

Does your organisation have clearly established
security guidelines in the area of DevSecOps or CI/
CD?

Yes No Yes Yes No No Yes Yes Yes Yes 70%

P = Private, G = Governmental

Table 6: Results of contextual questions

Definition 4 7 8 9 10 11 12 13 14 16 %

Do you agree with the provided definition for DevOps? Yes No1 Yes Yes No² No³ Yes Yes Yes Yes 70%

Do you agree with the provided definition for DevSecOps? Yes No4 Yes No5 Yes Yes Yes Yes No6 Yes 70%

1 Saying that DevOps is a “development methodology” is selling it short. I would call it more a system/software development
lifecycle methodology
2 Should be aimed at business goals and their needs for agility. It should not be aimed at development or operations itself
3 The last part about automation is what developer brought to it. DevOps is about braking the wall between dev and ops,
initially not about tools and automation
4 I do not see why it has to rapidly evolve
5 Depends on the teams and the department in which they operate
6 Only if the deliverable is software. Security is a systemic property that is much wider than software alone

Table 7: Results on the validation of the proposed definitions for DevOps and DevSecOps

design factors were rated as relevant by at least 50% of the respondents and most by over 70% of the
respondents. The experts also provided additional insights through comments on the activities and
design factors. These comments were analysed and grouped together leading to the creation of 3
new security activities (level 1), 4 new detailed security activities (level 2) and 53 new design factors.
Details on the grouping and definition of these supplemental activities and design factors can be
consulted in appendix f.

The results from the validation and elaboration step were provided to the experts for their
information and feedback however a formal validation step by reissuing the updated survey was not
performed due to time limitations and risk for potential “survey fatigue” among the expert panel.

During the survey experts were requested to participate in an optional interview to further discuss
their views on the topic of DevSecOps. A total of 5 experts indicated their willingness to participate
out of which 3 responded to the invitation. The insights gathered during these interviews were used
to further refine the results obtained from the survey. The transcripts of these interviews can be found
in appendix d.

The final list of security activities and related design factors was updated and restructured based on
the outcome of the survey and the interviews. This validated and elaborated list of security activities
and design factors provides the answer to the second research question (RQ2) and related
knowledge goal (K3) and forms the basis for the prioritisation exercise performed in the next step of
this research. The knowledge and insights gained from the experts is represented in the in-depth
descriptions of the various security activities included in the first part of this paper.

Interim conclusion

The results obtained through the expert survey on the validation of the terms DevOps and
DevSecOps (see table 8) allows us to answer our first research question (RQ1) and achieve our first
knowledge goal (K1) as follows:

RQ1a: What is the definition of DevOps?

“DevOps is a development methodology aimed at bridging the gap between Development and
Operations, emphasising communication and collaboration, continuous integration, quality
assurance and delivery with automated deployment utilising a set of development practices.” [10]

RQ1b: What is the definition of DevSecOps?

RuggedOps (DevSecOps): “Rugged” describes software development organisations that have a
culture of rapidly evolving their ability to create available, survivable, defensible, secure, and resilient
software [22]

The results obtained through the expert validation and elaboration as represented in tables 9 and 10
allow us to complete the second knowledge goal (K2) and allows us to answer the second research
question (RQ2):

2928 Master thesis
Lean security

Master thesis
Lean security

Table 8: Results of validation of security activities by expert panel

Activity
4 7 8 9 10 11 12 13 14 16 Relevant

Performing automated security testing Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100%

Performing automated run-time testing Yes Yes Yes Yes No Yes Yes Yes No Yes 80%

Performing automated static testing Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100%

Performing automated software composition
analysis

Yes Yes Yes Yes Yes Yes Yes Yes Yes No 90%

Integrate security tests in unit testing Yes Yes Yes Yes Yes Yes Yes Yes Yes No 90%

Performing security requirements analysis Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100%

Performing threat modeling Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100%

Performing risk analysis Yes No Yes Yes Yes No Yes Yes Yes Yes 80%

Establishing security SLA's for cloud providers Yes Yes Yes Yes Yes Yes Yes Yes No No 80%

Performing continuous monitoring Yes Yes Yes Yes No Yes Yes Yes Yes Yes 90%

Performing continuous monitoring of security
SLA's

Yes No Yes No No Yes No Yes Yes 56%

Performing continuous monitoring of security
metrics throughout the SDLC using CI/CD
tooling

Yes Yes Yes Yes No Yes Yes Yes No 78%

Performing continuous monitoring of system
metrics using automated tools

No Yes Yes Yes No Yes Yes No No 56%

Performing continuous monitoring of security
controls

Yes Yes Yes Yes Yes Yes Yes Yes No 89%

Performing continuous monitoring of application
behaviour

Yes Yes Yes Yes Yes Yes Yes Yes No 89%

Provide self-service monitoring capabilities to
dev and ops

Yes No Yes Yes Yes Yes Yes No No 67%

Implement automated remediation Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100%

Implement automation of software licensing No No No Yes Yes Yes No No No No 30%

Performing continuous assurance Yes Yes Yes Yes Yes Yes Yes Yes No No 80%

Performing manual security testing Yes No Yes Yes Yes Yes Yes Yes Yes Yes 90%

Performing manual penetration testing Yes Yes Yes Yes Yes Yes Yes Yes No 89%

Performing manual security review Yes Yes Yes Yes Yes Yes Yes Yes No 89%

RQ2: Which set of security activities and design factors relevant to DevOps processes can be
distinguished from academic literature?

A total of 31 security activities (table 8) and 34 design factors (table 9) identified through literature
research are considered relevant in the context of security for DevOps. The elaborated set based on
the expert panels insights totals 33 security activities and 87 design factors.

Performing manual security testing Yes No Yes Yes Yes Yes Yes Yes Yes Yes 90%

Performing manual penetration testing Yes Yes Yes Yes Yes Yes Yes Yes No 89%

Performing manual security review Yes Yes Yes Yes Yes Yes Yes Yes No 89%

Performing automated security testing of the CI/CD
pipeline

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100%

Performing security configuration automation Yes Yes Yes Yes Yes Yes No Yes No No 70%

Performing continuous feedback from production to
development

Yes No No Yes Yes Yes Yes Yes Yes Yes 80%

Provide security training Yes Yes Yes Yes Yes Yes Yes Yes No No 80%

Establish security satellites Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100%

Practice incident response Yes No Yes No Yes Yes Yes Yes No No 60%

Table 8: (Continued.) Results of validation of security activities by expert panel

3130 Master thesis
Lean security

Master thesis
Lean security

Table 9: Results of validation of design factors by expert panel

Design factor
4 7 8 9 10 11 12 13 14 16 Relevant

Leverage SecaaS by using cloud provided self-
managed, automated and scalable security services

Yes Yes Yes Yes Yes No Yes Yes 88%

Integrate the security tools in an automated
deployment pipeline

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100%

Automate as many security controls and verifications
as possible

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100%

Perform automated run-time testing at four levels: (1)
pre-authentication scanning, (2) post-authentication
scanning, (3) independent backend scanning and (4)
complete workflows

Yes Yes Yes Yes Yes Yes Yes Yes 100%

Ensure automated run-time testing is implemented
for a broad scope of test scenarios

Yes Yes Yes Yes Yes Yes Yes Yes 100%

Ensure proper unit tests are in place to optimise run-
time testing efficiency

Yes Yes Yes Yes Yes Yes No Yes 88%

Minimise the number of false positives resulting from
static testing

Yes Yes Yes Yes Yes Yes Yes Yes 100%

Treat security requirements as nonfunctional
requirements

Yes Yes Yes Yes Yes Yes Yes Yes Yes 100%

Leverage metrics gathered during the security
requirements analysis phase to evaluate the security
level of alternative designs

Yes No Yes No Yes Yes Yes 71%

Enable the evaluation of alternative designs through
suitable metrics during security requirements
analysis to determine variations in security levels of a
given design and make appropriate choices

Yes Yes Yes Yes Yes 100%

Leverage goal-oriented requirements analysis
(GORE) to perform security requirements analysis

Yes Yes Yes Yes Yes 100%

Perform threat modelling from a risk-centric
perspective

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100%

Perform threat modelling from a attack-centric
perspective

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100%

Perform threat modelling from a software-centric
perspective

Yes Yes Yes Yes Yes No Yes Yes Yes 89%

Ensure compatibility of threat modelling outcomes
from a scope and result perspective

Yes Yes Yes Yes Yes Yes 100%

Introduce abuse cases and problem frames to
perform threat modeling

Yes Yes Yes Yes Yes Yes Yes Yes 100%

Make use of attack or threat trees to perform threat
modelling

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 100%

Design factor
4 7 8 9 10 11 12 13 14 16 Relevance

Implement traceability of threat modelling (results) in
the code base

Yes Yes Yes Yes Yes Yes 100%

Automated threat impact analysis Yes Yes Yes Yes Yes Yes Yes 100%

Performing risk analysis continuously before each
iteration

Performing risk analysis during the design phase

Include a broad range of stakeholders including the
business owner when setting security goals

Establish clear rules regarding information exchange
across teams and maintain a log for every access to
sensitive data

Provide security knowledge and tools and
encourage the Development and Operations teams
to integrate themselves

Consider gamification for finding vulnerabilities or
bugs

Ensure continuous monitoring covers a wide range
of resources and metrics including logical security,
availability and intrusions

Yes Yes Yes Yes Yes Yes Yes Yes Yes 100%

Leverage monitoring as code to establish a
versioned and repeatable deployment of monitoring
infrastructure

Yes Yes Yes Yes Yes Yes Yes Yes 100%

Limit manual penetration testing to critical
components or perform in parallel to reduce impact
on deployment lead times

No Yes Yes Yes No Yes Yes No 63%

Set a time limit for all lower-priority security defects Yes Yes Yes Yes No Yes No 71%

Give attack patterns to your developers Yes Yes Yes Yes Yes Yes Yes 100%

Build an internal forum to discuss attacks Yes Yes Yes No Yes Yes 83%

Establish emergency code base response Yes Yes Yes Yes No Yes 83%

Incorporate security tests as part of QA for detected
incidents

Yes Yes Yes Yes No Yes 83%

Teach every developer enough to enable them to
identify areas where they would benefit from the
advice of an expert

Yes Yes Yes Yes Yes Yes Yes 100%

Table 9: (Continued.) Results of validation of design factors by expert panel

3332 Master thesis
Lean security

Master thesis
Lean security

Prioritisation by expert panel

With the validated and elaborated list of security activities established the remaining objective of this
research is to prioritise them on aspects which are relevant to DevSecOps. To achieve this a second
expert panel was established to leverage the knowledge of security experts to rank them in terms of
effectiveness, delay and financial impact. To facilitate this a Group Support Session (GSS) was
organised bringing together the experts while stimulating free-flowing discussions and sharing of
experiences. The session was performed on 15th of April 2020 from 16:00 to 18:00 GMT+1 through
an online video conferencing platform and leveraging group support systems software
(MeetingWizard). The target group size for the GSS session was set at 10 participants to ensure an
appropriate group size allowing sufficient qualified data without introducing a high level of noise.

The number of items to be discussed was limited to the 29 security activities to make the best out of
the limited time and “processing power” of the group [34].

A total of 8 experts participated in the ranking session (see appendix e: knowledge nomination
worksheet). These experts received an invitation beforehand together with an overview of the
outcome of this research so far allowing time to prepare should they wish to do so.

The security activities were grouped by category (collaboration, non-automated and automated
security activities) and treated in these groups to avoid long uninterrupted ranking steps. The experts
where explicitly asked not to perform the ranking by category but to perform the ranking holistically.
The experts were also invited to provide comments to express their thoughts and reflections, which
they did extensively.

Figure 10: Ranking scales used for prioritisation of security activities

Each security activity was ranked on a likert scale from 1 to 5 for each of the following three aspects:

• effectiveness: the degree to which an activity contributes to the security of the resulting software

• delay: the degree to which an activity is expected to cause delays in the development and
operations processes

• financial: the degree to which an activity is expected to have financial impact such as effort or
licensing costs

This scale was explained to the experts by providing two examples on how the ranking could be
applied to “Performing penetration testing” and “Performing continuous assurance”. It was clearly
expressed that these were only meant as illustration of the ranking scales. From this point on the
session was strictly moderated by prof. Dr. Yuri Bobbert to avoid any influence from the researcher.
The participants had the opportunity to ask questions when the context of a certain activity was
unclear. The raw result set was downloadable for the experts upon completion of the session.

Descriptive statistics were applied to the dataset to determine the qualitative scores for each of the
three aspects for which a consensus exists between most of the experts. This was achieved by
calculating the median and Inter-Quartile Range (IQR) for each item. The median is a measure of the
central tendency and the IQR provides a measure of the spread. A full SPSS analysis was not

3534 Master thesis
Lean security

Master thesis
Lean security

performed on the dataset due to the limited time available. An overview of the results can be
consulted in table 10 and the scoring of the participants and comments can be consulted in
appendix g.

The comments provided by the participants were read and analysed to place the scoring in context.
In most cases where the scoring displayed a large spread (IQR), indicating dissonance of opinion, the
comments provided sufficient insight to explain the differences. A write-up of the conclusions for
each activity was drafted and provided to the experts for feedback. This conclusion is included in part
one of this paper under the detailed security activities section.

Interim conclusion

The results of this analysis (see table 10) were used to construct the prioritised list of security activities
relevant in DevSecOps thereby providing an answer to the third and last research question RQ3 and
the related knowledge goal K3.

Table 10: Results of the prioritisation of security activities by the expert panel

Activity Effectiveness Delay Financial
Mean IQR Mean IQR Mean IQR

Collaboration

Performing continuous feedback from production to
development

4.5 1.25 4.0 1.50 4.0 1.00

Provide security training 4.0 1.00 4.0 1.50 3.0 0.50

Establish security satellites 5.0 1.00 4.0 0.50 3.0 1.50

Practice incident response 4.0 1.25 4.0 1.50 3.0 1.50

Establish a security mindset across the organisation 4.0 1.25 4.0 1.50 3.0 2.00

Use of automated activities
Performing automated security testing

Performing automated run-time testing 3.0 1.25 4.0 0.50 3.0 1.50

Performing automated static testing 3.5 2.00 3.0 1.50 2.5 1.00

Integrate security tests in unit testing 4.5 1.25 4.0 0.50 3.0 1.50

Table 10: (Continued.) Results of the prioritisation of security activities by the expert panel

Activity Effectiveness Delay Financial
Mean IQR Mean IQR Mean IQR

Use of automated activities (continued)

Performing continuous monitoring

Performing continuous monitoring of security SLA's 3.0 2.00 4.0 2.00 3.5 1.75

Performing continuous monitoring of security metrics
throughout the SDLC using CI/CD tooling

4.0 1.00 4.0 1.50 3.5 1.00

Performing continuous monitoring of system metrics
using automated tools

4.0 1.50 4.0 1.50 3.0 0.75

Performing continuous monitoring of security controls 4.0 0.50 4.0 1.00 3.0 1.50

Performing continuous monitoring of application
behaviour

4.0 0.25 4.0 1.50 2.0 1.50

Provide self-service monitoring capabilities to dev and
ops

3.0 1.25 4.0 1.50 4.0 1.50

Implement centralised dashboard 3.5 1.50 4.0 1.50 4.0 0.00

Implement automated remediation 3.0 1.50 5.0 0.50 3.0 1.50

Performing security configuration automation 4.0 0.25 4.0 1.50 3.0 2.00

Implement secrets management 4.5 2.00 4.0 1.50 3.5 1.75

Manage digital supply chain

Establish artefact and source code registries which are
automatically scanned for vulnerabilities

4.0 1.00 3.0 1.50 4.0 1.50

Implement automated container security scanning 4.0 1.25 4.0 0.00 3.5 1.00

Performing automated software composition analysis 3.0 1.25 3.0 1.00 3.0 1.50

Use of non-automated activities

Performing security requirements analysis 3.0 0.50 3.0 1.50 3.5 2.00

Performing threat modeling 3.0 0.50 3.0 1.00 3.0 0.25

Performing risk analysis 4.0 0.50 3.5 1.00 4.0 0.25

Establishing security SLA's for cloud providers 3.0 2.00 4.5 2.25 3.5 1.00

Performing continuous assurance 4.0 2.00 3.0 2.00 3.0 0.25

Performing manual security testing

Performing manual penetration testing 4.0 1.50 2.0 1.50 2.0 1.25

Performing manual security review 3.0 1.50 2.0 1.00 3.0 1.25

Securing the CI/CD pipeline 4.0 1.50 4.0 1.25 3.5 1.25

3736 Master thesis
Lean security

Master thesis
Lean security

39Master thesis
Lean security

Part three: Analysis

This part of the paper contains in-depth analysis performed for each of the security activities and
design factors identified during the previous research steps.

3938 Master thesis
Lean security

Master thesis
Lean security

“Integrating security deeply into the software delivery
lifecycle makes teams more than twice as confident of

their security posture.“

State of DevOps report, 2019 [61]

Collaboration
Performing continuous feedback from production to development

Performing continuous feedback between production and development teams is mentioned by
various researchers as an important factor for effective DevSecOps. A wide range of activities are
present under this umbrella however the main concept revolves around the ability to make quick
changes in the code if a vulnerability is discovered (in operations), this is also referred to as
emergency code base response [42]. Establishing emergency code base response allows
organisations to react to security incidents through swift modification and deployment of
applications. Continuous feedback has an added bonus of facilitating continuous improvement by
allowing security incidents to be leveraged as a learning opportunity.

Design factors

A corner stone to enable emergency code base response is a process to feed flaws or bugs that are
discovered in operations to the development team. The number of flaws or bugs discovered in
production can be leveraged as a metric to measure the level of security in a given piece of software.
To facilitate this exchange of information an interface between developers and incident response
operators needs to be established. A suggested approach is to create an internal forum to discuss
attacks and exchange attack patterns [43]. Another recommended practice would be to assign a
contact point for the software security group outside of office hours.

Feeding back information regarding security defects and even incidents is only one part of the
approach. As mentioned by researchers [42] and confirmed by various members of the DevSecOps
expert panel it remains challenging to ensure that security defects are prioritised against functional
requirements. Potential approaches to overcome this commonly found issue is to set time limits for
security defects [42] or dedicating a fixed percentage of effort or sprints to implementing security
related features and fixing defects. It is advised to ensure that weaknesses detected in production are
included in the QA processes to reduce the risk of regressions [44].

Expert ranking

Within DevSecOps feedback loops are considered crucial to share both successes and issues as a
way to foster collaboration and improve the quality of the results. Continuous feedback from
production to development is expected to contribute to this objective while also ensuring that issues
do not go unnoticed for weeks. There is agreement within the expert panel that performing
continuous feedback from production to development is highly effective (mdn= 4.5, IQR= 1.25),
does not cause significant delays (mdn= 4.0, IQR= 1.50) and does not have a significant financial
impact (mdn= 4.0, IQR= 1.00). This is under the assumption that appropriate stakeholder

management is applied to ensure that only relevant roles are included and that the feedback is
automated to the extend possible.

Frameworks

OWASP SAMM v2.0 Operations: Incident management

BSIMM v10 Deployment: Configuration Management & Vulnerability Management

Design factors Relevance

Set a time limit for all lower-priority security defects

Give attack patterns to your developers

Build an internal forum to discuss attacks

Establish emergency code base response

Incorporate security tests as part of QA for detected incidents

5 of 7
experts

7 of 7
experts

5 of 6
experts

5 of 6
experts

5 of 6
experts

Quick facts

Why should you do this?
• Foster collaboration
• Ensure that issues are detected and resolved faster

What to avoid?
• Perform all activities manually
• Involve too many or incorrect roles in the organisation

Expert ranking Median IQR

Effectiveness 4.5 1.25 Higher scores indicate a higher level of effectiveness

Impact on delay 4.0 1.50 Higher scores indicate a lower friction or delay

Financial consequences 4.0 1.0 Higher scores indicate lower financial consequences

4140 Master thesis
Lean security

Master thesis
Lean security

Provide security training

Software security education is an import aspect of security regardless of the chosen development
approach. Some researchers argue that security training gains in importance in agile development
teams due to the decentralisation of responsibilities and the increased speed of deployment.

How much education is required remains a matter of debate as it is not possible to teach every
developer to be a software security expert [42][45] which was also mentioned as a limitation by
experts in this research.

Design factors

A potential alternative approach to security training is to involve developers in building security tools
which provides them learning opportunities and gives the added benefit of improving DevSecOps
processes [20]. The DevSecOps expert panel indicated that security training should be hands-on.

The experts suggest to approach training with a broader perspective and to target all the relevant
roles including product owners. Some topics to consider are educating teams how to refactor
software and explaining to product owners that this is very important, teaching approaches to think
from a risk perspective, perform risk prioritisation and explaining that cloud native services are not
secure by default were given as examples on principles to teach stakeholders.

Expert ranking

Sharing and increasing knowledge within the DevSecOps teams is perceived as an important enabler
for DevSecOps. Tailoring the level of security training based on the criticality of the role and the
current level of security mindset is recommended. Training on specific topics only needs to be
performed once however it is important to ensure that people put their new skills and knowledge
into practice. The expert panel agrees that providing security training is an effective activity
(mdn=4.0, IQR=1.00) and that it does not cause significant delay (mdn=4.0, IQR=1.50). They do
however strongly agree that moderate financial impact is to be expected (mdn=3.0, IQR=0.50). High
quality external training material can be expensive therefore the financial consequences are
expected to be moderate.

Frameworks

OWASP SAMM v2.0 Governance: Education and guidance

BSIMM v10 Governance: Training

Design factors Relevance

Teach every developer enough to enable them to identify areas where they would
benefit from the advice of an expert

Security training should be hands-on

Educate teams how to refactor software

Educate product owners on the importance of security

Ensure that team members can put their new skills and knowledge into practice

Organise centralised training sessions and workshops

7 of 7
experts

n/aAdded by expert

n/aAdded by expert

n/aAdded by expert

n/aAdded by expert

n/aAdded by expert

Quick facts

Why should you do this? • Increase the security knowledge and mindset in the organisation

What to avoid? • Not tailoring the contents of the trainings to the specific roles

Expert ranking Median IQR

Effectiveness 4.0 1.00 Higher scores indicate a higher level of effectiveness

Impact on delay 4.0 1.50 Higher scores indicate a lower friction or delay

Financial consequences 3.0 0.50 Higher scores indicate lower financial consequences

4342 Master thesis
Lean security

Master thesis
Lean security

Establish security satellites

Various studies point out the importance of establishing security satellites as part of the development
teams. The principle is that the security team teaches one of the developers about security, and then
[that person] disseminates the information to the rest of the team. It’s really about knowledge sharing
[44].

The importance of embedding security knowledge and responsibility within each development team
originates from the idea that short-term helicopter-style incursions of a centralised security team will
inevitably be perceived as an outside agent hindering progress [42]. The presence of security-
minded developers across the organisation will aid in resolving quick fixes in case of incidents. The
term “satellite” is the one used in the BSIMM; some organisations have formalised this as a security
champion for some or all development teams [43].

Within the expert panel there was some debate on the definition of the term where experts indicated
a difference between security satellites and security champions where the first was perceived as a
member of an external security team who could be contacted by the DevOps teams whereas the
latter would be a person embedded in the DevOps teams themselves. For the purpose of this
research the terms are used interchangeably and adhere to the definition of a security champion.

Design factors

Experts from the DevSecOps panel point out that establishing security satellites is a starting point to
implement the principle of ‘Security to the left’. However they feel that the most effective way to
implement security champions is to allow the teams to discover the usefulness of this role by
themselves and not having it forced upon them.

Expert ranking

Establishing security satellites allows injecting the DevSecOps teams with security knowledge and
best practices. It also provides a feedback loop from the teams towards the central security team on
their needs and helps fostering a security mindset in the organisation. Giving appropriate levels of
authority to security satellites increases their efficiency. The expert panel agrees that this activity is
highly effective (mdn=5.0, IQR=1.00), this is expected to be the case even more in large
organisations where there may be boundaries between the development and centralised
information security teams. Incorporating this activity in the approach is not believed to cause
significant delays in the DevSecOps process (mdn=4.0, IQR=0.50). Different views exist on the expert
panel regarding the financial consequences as they are expected to be in direct relation to the time
assigned to security duties (mdn=3.0, IQR=3.0).

Quick facts

Why should you do this?
• Improve the security mindset
• Share knowledge and best practices
• Gather feedback from teams on security aspects

What to avoid? • Not providing a sufficient level of authority to security satellites

Expert ranking Median IQR

Effectiveness 5.0 1.00 Higher scores indicate a higher level of effectiveness

Impact on delay 4.0 0.50 Higher scores indicate a lower friction or delay

Financial consequences 3.0 1.50 Higher scores indicate lower financial consequences

Frameworks

OWASP SAMM v2.0 Governance: Education and guidance

BSIMM v10 Governance: Training

Design factors Relevance

Should not be forced but discovered

Should be provided sufficient authority

n/aAdded by expert

n/aAdded by expert

4544 Master thesis
Lean security

Master thesis
Lean security

Practice incident response

DevSecOps teams should organise red-team exercises performing security drills on the deployed
software [46]. Such preparedness exercises should involve both incident responders and developers
[43]. The objective of the exercise is to find and exploit vulnerabilities in the system thereby not only
assisting in the identification of security flaws but also providing metrics on incident response
capabilities. These metrics can be leveraged to find solutions and improvements. An additional
benefit to these exercises is that the break silos and facilitate collaboration [44].

Expert ranking

Practicing incident response from DevSecOps perspective aims at involving the development and
operations team in the exercise. Doing so allows not only a more effective response to incidents in
the future but also to improve the security mindset across the various roles involved. The expert panel
agrees that this activity can be effective but to varying degrees (mdn=4.0, IQR=1.25). There is more
dissonance on the delay (mdn=4.0, IQR=1.25) and financial consequences (mdn=3.0, IQR=1.50) of
this activity which depends on when and by whom this activity is performed. The expert panel points
out that incident response exercises could be performed during low time.

Frameworks

OWASP SAMM v2.0 Incident Management: Mature incident management

BSIMM v10 Deployment: Configuration management & vulnerability management

Quick facts

Why should you do this?
• Increase effectiveness of incident response
• Increase security mindset across various roles

What to avoid?

Expert ranking Median IQR

Effectiveness 4.0 1.25 Higher scores indicate a higher level of effectiveness

Impact on delay 4.0 1.50 Higher scores indicate a lower friction or delay

Financial consequences 3.0 1.50 Higher scores indicate lower financial consequences

Establish a security mindset across the organisation

The DevSecOps expert panel indicated the importance of training management on security
concepts as an enabler for security. Product owners and project managers are directly involved in
balancing security with functionality while taking into account business value. This makes them
important stakeholders.

Expert ranking

The experts mostly agree that this activity can be highly effective (mdn=4.0, IQR=1.25) and is not
expected to cause significant delays (mdn=4.0, IQR=1.50). There is debate in terms of financial
consequences. Some experts indicated that implementing this activity requires a lot of effort (N=1,
28%) while others indicated that this does not necessarily have to be the case (N=4, 42%). Regardless
of effort changing a mindset is expected to be a slow and gradual process .

Frameworks

OWASP SAMM v2.0 Governance: Education and guidance

BSIMM v10 Governance: Training

Design factors Relevance

Train management on security concepts

Reward the teams who fix the most vulnerabilities

Share best practices all across the organisation

Establish a code quality standard for each programming language

n/aAdded by expert

n/aAdded by expert

n/aAdded by expert

n/aAdded by expert

Quick facts

Why should you do this?
• Obtain a good balance between security and functionality from a business value

perspective

What to avoid? • Limiting the "security mindset" to technical roles

Expert ranking Median IQR

Effectiveness 4.0 1.25 Higher scores indicate a higher level of effectiveness

Impact on delay 4.0 1.50 Higher scores indicate a lower friction or delay

Financial consequences 3.0 2.00 Higher scores indicate lower financial consequences

4746 Master thesis
Lean security

Master thesis
Lean security

Use of non-automated activities
Performing security requirements analysis

Software development is usually performed based on requirements defined by stakeholders. In
many cases these requirements focus on functional requirements and omit security focused
requirements. Studies call for the definition of security requirements so that they are included from
the start of a project [44].

Design factors

Security requirements should be testable, clear, consistent, complete, unambiguous, measurable
and accompanied by acceptance criteria. [47]

A commonly suggested approach to identify these security requirements is through the use of ‘abuse
cases’ and ‘misuse cases’ which provides an inverse perspective leading to the identification of
security requirements. Another approach for security requirements analysis is to leverage goal-
oriented requirements analysis (GORE) [48]. A detailed explanation of goal-oriented requirements
analysis is not feasible in the content of this research however various papers and case studied can
be found in literature.

The threat modeling and risk analysis steps described elsewhere can also be leveraged to provide
input for the security requirements analysis phase. And the security requirements identified during
this activity may also be leveraged to compare design options to select the most appropriate
approach from a security perspective [42].

The expert panel involved in this research agreed that security requirements form an important
aspect in DevSecOps. However a recurring remark during the survey and interviews is that very often
security requirements are set back in favour of functional requirements by the business stakeholders.
Various experts wonder how to strike the right balance between functional and non-functional
requirements. An approach which was applied at one of the respondent organisations was to
dedicate a fixed percentage of effort during each sprint to security related requirements.

Expert ranking

Effective security requirements analysis requires a tailored approach, the effort spent defining
security requirements needs to be in line with the level of sensitivity of the application. The definition
of high level security requirements itself is not so complex however detailing them towards technical
requirements is complicated and requires significant security knowledge. Therefore it makes sense
to stop at the definition of high level security requirements for less sensitive applications while going
into greater technical detail for sensitive applications. Overall security requirements analysis is
perceived as moderately effective (Mdn=3.0, IQR=0.50) which is counterintuitive seeing that experts

throughout this research indicated that security requirements form a corner stone in the process from
design over implementation to testing. Delays caused by performing security requirements analysis
and the financial consequences are directly related to the depth of the analysis and wether or not the
analysis is incorporated in the sprints or not. These variables may explain the different views of
experts. A suggested approach would be the creation of proper baselines acting as boiler plates to
speed up requirements analysis for common applications.

Frameworks

OWASP SAMM v2.0 Intelligence: Security features and design

BSIMM v10 Design: Security requirements

Design factors Relevance

Treat security requirements as nonfunctional requirements

Leverage metrics gathered during the security requirements analysis phase to evaluate
the security level of alternative designs
Enable the evaluation of alternative designs through suitable metrics during security
requirements analysis to determine variations in security levels of a given design and
make appropriate choices
Leverage goal-oriented requirements analysis (GORE) to perform security
requirements analysis

Leverage process metrics

Establish rules to balance functional and non-functional requirements

Leverage Model-based systems engineering

9 of 9
experts

5 of 7
experts

5 of 5
experts

5 of 5
experts

n/aAdded by expert

n/aAdded by expert

n/aAdded by expert

Quick facts

Why should you do this?
• Ensure security aspects are taking into account during development and testing
• Identify business logic errors

What to avoid?
• Applying the same rigour in terms of security requirements analysis to every

application regardless of their level of sensitivity

Expert ranking Median IQR

Effectiveness 3.0 0.50 Higher scores indicate a higher level of effectiveness

Impact on delay 3.0 1.50 Higher scores indicate a lower friction or delay

Financial consequences 3.5 2.00 Higher scores indicate lower financial consequences

4948 Master thesis
Lean security

Master thesis
Lean security

Performing threat modeling

Threat modeling aims at identifying potential weaknesses in a given design and the related threats
which could be posed by them. As such threat modeling can be considered as a potential input for
risk analysis during the design phase of an information system.

Design factors

Performing threat modeling from the initial planning stage while placing the results in context
through a risk analysis is paramount to establish security by design. By applying this process
iteratively throughout the development cycle an approach to identify and prioritise weaknesses and
examine controls already in place allows an effective risk treatment strategy to be defined [46].

Threat modeling starts by creating an abstraction of the application under design or development
usually employing a Data Flow Diagram. A threat modeling approach, such as STRIDE [49] is applied
by iterating over the model elements to identify all potential security threats. The approaches to
identifying potential threats are numerous ranging from the use of mnemonics, which is more
suitable for experienced security professionals, to the use of attack trees or serious games such as
“Elevation of Privilege” [50] or “OWASP Cornucopia” [51] empowering development and operations
teams to perform threat modeling autonomously. Results obtained from threat modeling can also be
used to develop tests to be incorporated as part of the Quality Assurance (QA) process [44].

Researchers [48] distinguish several categories of threat modeling techniques: risk-centric, attack-
centric or software-centric. Not all threat analysis however can be categorised in the aforementioned
groups. In the context of DevSecOps analysis velocity is preferred over analysis systematicity.
Therefore a strong focus on the most important assets is key to allow timely results.

Shostack argues that software-centric threat modeling techniques are most suitable to identifying
threats in information systems. He also mentions that it makes sense to perform threat modeling
without (security) experts due to their short supply and that by including the people involved in
building the system they obtain a sense of ownership and an understanding of the security model
[52].

The DevSecOps panel who were consulted during this research confirmed that the various threat
modeling approaches (risk-, attack- and software-centric) can prove valuable depending on the
objective and scope of the threat modeling activity. The use of different techniques such as attack
trees, abuse cases and problem frames is recommended to assist in the identification of potential
weaknesses. However the expert panel places emphasis on selecting a threat modeling approach
which is iterative and where possible assisted by automation to reduce the time required to perform
a threat modeling exercise. Annotating the outcome of the threat modeling directly in the codebase
can be a good method to allow traceability. However, according to experts, these techniques have
not yet matured to the level where they can be leveraged broadly.

Teams are more likely to consistently perform threat modeling at the start of each iteration if the time
required to perform the activity is reduced. This leads to a wider coverage of the threat models. A
challenge related to such an iterative approach is to ensure that the full breadth of the system is
covered. There is a need to maintain oversight on the compatibility of the threat modeling outcomes
from both a scope and a result perspective.

Expert ranking

Overall experts on the panel perceive threat modeling as moderately effective (Mdn=3.0, IQR=0.50).
There is however a wide range of approaches to threat modeling with different outcomes depending
on the technique, the goal and even the stage in the DevSecOps cycle in which the activity is
undertaken. This makes it difficult to achieve a common view on the topic. According to the experts
threat modeling allows the detection of weaknesses before the actual implementation is started and
can be leveraged as the basis for risk analysis and security testing. It also allows the identification of
the potential blast radius of an attach by analysing the potential chains of weaknesses. Some experts
point out that manual threat modeling is only moderately effective for these purposes, instead they
recognise a significant advantage in using threat modeling to increase the security mindset in
developers by raising awareness. Most experts agree however that automation of threat modeling
and focusing on technical security components are key characteristics of effective threat modeling.
Threat modeling is considered to have a moderate impact in terms of delay and financial
consequences. In principle it can be done reasonably fast by experienced people with appropriate
tooling. Licenses for these tools and the required training to do it will have however a cost associated.

5150 Master thesis
Lean security

Master thesis
Lean security

Frameworks

OWASP SAMM v2.0 Design: Threat assessment

BSIMM v10 Intelligence SSDL touchpoints: Attack Models Architecture Analysis

Design factors Relevance

Perform threat modelling from a risk-centric perspective

Perform threat modelling from a attack-centric perspective

Perform threat modelling from a software-centric perspective

Ensure compatibility of threat modelling outcomes from a scope and result perspective

Introduce abuse cases and problem frames to perform threat modeling

Make use of attack or threat trees to perform threat modelling

Implement traceability of threat modelling (results) in the code base

Automated threat impact analysis

Threat modeling should be performed through an iterative approach

Leverage both quantitative and qualitative approaches

10 of 10
experts

10 of 10
experts

8 of 9
experts

6 of 6
experts

8 of 8
experts

n/aAdded by expert

n/aAdded by expert

10 of 10
experts

6 of 6
experts

7 of 7
experts

Quick facts

Why should you do this?

• As a starting point for risk analysis
• To identify areas for security testing
• To identify the blast radius of potential attacks
• To increase the security mindset (when performed manually)

What to avoid? • To apply threat modeling at the business process level

Expert ranking Median IQR

Effectiveness 3.0 0.50 Higher scores indicate a higher level of effectiveness

Impact on delay 3.0 1.00 Higher scores indicate a lower friction or delay

Financial consequences 3.0 0.25 Higher scores indicate lower financial consequences

Performing risk analysis

Risk analysis aims to identify risks and quantify them as a function of likelihood and impact. The
results of a threat modeling exercise can be placed in context through a risk assessment. A calculation
is applied to the identified weaknesses based on attributes such as likelihood and impact to
determine a risk factor while taking into account existing countermeasures.

The DREAD framework, which defines the attributes Damage, Reproducibility, Exploitability, Affected
Users and Discoverability, is sometimes used as a methodology in (technical) risk assessments. Based
on experiences at Microsoft Shostack states that DREAD is not well suited for software-centric risk
analysis as it seems to add numbers without defining their scales, generating a risk of making a risk
assessment appear algorithmic when it’s not [52].

Design factors

The outcome of a risk assessment enables stakeholders to decide on risk treatment options taking
into account effectiveness, cost and impact. It is emphasised that all stakeholders, including business,
should be part of the risk assessment to ensure that security is taken into consideration during
product development and to provide visibility on a continuous basis [47].

Previous studies on multi-cloud DevOps implementations [53] indicate that continuous risk
assessment is also key in selecting the security controls and metrics to be included in Security SLA’s
for cloud services.

Expert ranking

Performing risk analysis is perceived by the expert panel as a very effective approach (mdn=4.0,
IQR=0.50) to prioritise security efforts such as the rigour applied in defining security requirements
and performing security testing. When performing risk analysis it is important to ensure the approach
remains practical and yields tangible results. This prevents it becoming a theoretical exercise which
provides little benefits. Direct impact on delay in the DevSecOps process is expected to be relatively
low (mdn=3.5, IQR=1.00) as it is assumed this process is performed in a parallel track and in all cases
is completed before the actual technical activities start. However selecting a practical approach with
the appropriate level of intensity is key to ensure that team members with the required security
knowledge to complete this activity can keep up with the pace of development. The financial impact
of performing risk analysis is presumed to be limited (mdn=4.0, IQR=0.25) assuming that, as
recommended, a practical and pragmatic approach and intensity is selected.

5352 Master thesis
Lean security

Master thesis
Lean security

Frameworks

OWASP SAMM v2.0 Design: Threat assessment

BSIMM v10 Intelligence SSDL touchpoints: Attack Models Architecture Analysis

Design factors Relevance

Performing risk analysis continuously before each iteration

Performing risk analysis during the design phase

Include a broad range of stakeholders including the business owner when setting
security goals

Establish clear rules regarding information exchange across teams and maintain a log
for every access to sensitive data

Provide security knowledge and tools and encourage the Development and
Operations teams to integrate themselves

Consider gamification for finding vulnerabilities or bugs

n/aNot validated

n/aNot validated

n/aNot validated

n/aNot validated

n/aNot validated

n/aNot validated

Quick facts

Why should you do this? • To prioritise security related efforts

What to avoid? • Performing risk analysis to accurately measure risk

Expert ranking Median IQR

Effectiveness 4.0 0.50 Higher scores indicate a higher level of effectiveness

Impact on delay 3.5 1.00 Higher scores indicate a lower friction or delay

Financial consequences 4.0 0.25 Higher scores indicate lower financial consequences

Establishing security SLA's for cloud providers

Various cloud technology oriented research papers propose approaches to the definition of security
service level agreements for cloud providers. The challenge resides in generating the required
Security SLA’s for across various cloud providers and maintaining oversight of the applications
consuming the cloud services related to these security SLAs [54]. An area of research related to this
is the automation of Cloud Security SLA generation.

Design factors

The DevSecOps expert panel mentioned that it is important for a DevSecOps team to be involved in
determining the required and desired cloud provider from a security control capability perspective.
They also mention that education of the decision makers with regards to the retention of
responsibility for security in cloud environments is key.

Expert ranking

Expert panel members point out the importance of availability and integrity aspects of information
systems residing in the cloud. Establishing security SLAs can be seen as a measure to achieve
certainty regarding these two crucial aspects. Other experts however point out that these security
SLAs only have minimal effect on the actual security levels and that the statements in these SLAs are
defined on such a high level that they do not necessarily provide tangible benefits. This explains part
of the variability in the effectiveness scoring, the experts agree on the importance but see varying
levels of actual benefits to investing effort in establishing these SLAs. About one third of the experts
perceives this activity as very effective (N=4, 37%) whereas another this of the experts indicate low
effectiveness (N=2, 37%) The experts do also not seem to have a common view on how much delay
establishing these security SLAs introduces in the DevSecOps process (mdn=4.5, IQR=2.25),some
point out that in most cases this activity is not organised in-line with the pipeline and therefore there
should not be any delay. When looking at the financial impact of this activity the panel agrees that in
general establishing the SLAs does not necessarily introduce significant costs (mdn=3.5, IQR=1.75),
in some cases premium services may be required to obtain reasonable SLAs which in turn would
represent a considerable financial consequences.

5554 Master thesis
Lean security

Master thesis
Lean security

Expert ranking Median IQR

Effectiveness 3.0 2.00 Higher scores indicate a higher level of effectiveness

Impact on delay 4.5 2.25 Higher scores indicate a lower friction or delay

Financial consequences 3.5 1.00 Higher scores indicate lower financial consequences

Frameworks

OWASP SAMM v2.0 Design: Security requirements

BSIMM v10 Intelligence: Security features and design

Design factors Relevance

Ensure that the DevSecOps team is involved in determining the required cloud
provider security controls

Educate decision makers on the retention of responsibility for security in cloud
environments.

n/aAdded by expert

n/aAdded by expert

Quick facts

Why should you do this?
• To obtain additional securities regarding availability and integrity of cloud

services

What to avoid?

Performing continuous assurance

Performing continuous assurance as an activity refers to continuously checking if a system satisfies
the federal regulations set by the government as per the domain of interest [12]. This activity can also
be defined more broadly to include compliance with internal policies.

Design factors

The majority of experts on the DevSecOps panel agreed with the relevance of this activity and
pointed in the direction of “policy-as-code” whereby requirements would be expressed in code and
automatically enforced through the infrastructure and the CI/CD pipeline.

Expert ranking

Expert panel members believe that compliance-as-code is key to highly regulated industries
however there is some disagreement on its bottom line effectiveness. Over half of the experts rated
this activity as very effective (N=4/N=5, 60%) while some rated it as very ineffective. These experts
warn that compliance should not be confused with security, an insecure application may still be
compliant. Performing continuous assurance may increase security awareness thereby helping the
establishment of a security mindset within the organisation. This activity is expected to create a
significant delay in the DevSecOps process due to the coordination efforts between the large
number of stakeholders involved (CISO, Compliance, Business, Dev and Ops). Judging the financial
impact of continuous assurance is complex when offsetting the cost against the potential gains in risk
avoidance. The experts point out that for this reason the business should always be in the driver seat
to decide on the balance between the cost of non-compliance (mainly determined by fines) and the
cost of compliance (including effort but also the cost of delaying a potentially lucrative business
feature). Overall the inherent financial impact of performing continuous assurance is perceived as
significant.

5756 Master thesis
Lean security

Master thesis
Lean security

Frameworks

OWASP SAMM v2.0 Governance: Policy & Compliance

BSIMM v10 Governance: Compliance & Policy

Design factors Relevance

Leverage compliance-as-code n/aAdded by expert

Quick facts

Why should you do this?
• Potentially part of the barrier to entry for your industry
• To avoid impact from sanctions and fines
• To establish a security mindset

What to avoid?
• Not putting the business stakeholders in the drivers seat when determining

compliance objectives

Expert ranking Median IQR

Effectiveness 4.0 2.00 Higher scores indicate a higher level of effectiveness

Impact on delay 3.0 2.00 Higher scores indicate a lower friction or delay

Financial consequences 3.0 0.25 Higher scores indicate lower financial consequences

Performing manual security testing

DevOps in general and DevSecOps specifically have place a strong emphasis on the automation of
activities. Never the less some manual security testing activities are referenced both in literature and
during interviews with members of the expert panel. The two main types of activities which were
distinguished consist of “manual penetration testing” and “manual security reviews”. Whether they
are part of DevSecOps is under debate however their effectiveness is generally agreed upon.

Frameworks

OWASP SAMM v2.0 Verification: Security testing

BSIMM v10 SSDL touchpoints: Security testing

Design factors Relevance

Limit manual penetration testing to critical components or perform in parallel to reduce
impact on deployment lead times

Automated security testing is an important enabler to increase value of manual testing

Performing manual penetration testing should depend on the criticality of the
application and the level customisation

n/aAdded by expert

n/aAdded by expert

5 of 8
experts

Performing manual penetration testing

Manual penetration testing provides a view of the potential attack surfaces and methods to which an
application is vulnerable through real world testing by a security professional. The results of manual
penetration testing are proportional to the knowledge of the person performing the test and the time
attributed to the engagement. In general manual penetration testing allows for more accurate results
because a human can try to examine context which is otherwise difficult to automate [55]. This activity
is mentioned in several research studies [42][43].

An issue mentioned by researchers [55] and members of the DevSecOps expert panel is that
performing manual penetration testing in environments where changes are deployed frequently is
difficult to implement due to the time constraints.

A proposed approach to overcome this limitation is to limit manual penetration testing to critical
components or perform them in parallel to the continuous deployment process to reduce the impact
on deployment lead times [55].

5958 Master thesis
Lean security

Master thesis
Lean security

The DevSecOps expert panel points out that performing automated security testing should be seen
as an enabler for valuable manual security testing. Recurring low level activities can be performed
through automated security testing allowing the penetration tester to focus on aspects which cannot
be automated. They also confirm that the necessity to perform manual security testing could be
determined based on the criticality of the application and the level of customisation the application
has gone through.

Expert ranking

Manual penetration testing is rated very effective by the expert panel (mdn=4.0, IQR=1.50), however
there are some differing views. The skillset of the person performing the penetration test, the process
to handle the results of the penetration test and the frequency of testing are expected to have an
impact on the effectiveness. Experts who scored the activity lower in terms of effectiveness point out
that for these reasons it is more beneficial to to focus on automated penetration testing (N=2, 25%).
Experts who rated the activity as highly effective state that a skilled penetration tester with proper
preparation (e.g. access to security requirements and threat modeling outcomes) is very effective in
identifying vulnerabilities in applications. The experts agree that penetration testing is very time
consuming (mdn=2.0, IQR=1.50) and therefore must be organised outside of the DevSecOps
pipeline to avoid introducing delays. The time required combined with the expert skills required to
perform this activity results in a significant financial impact (mdn=2.0, IQR=1.25).

Quick facts

Why should you do this? • Obtain direct results in terms of vulnerabilities and exploitability in an application

What to avoid?

• Perform a penetration test as a one off prior to going to production
• Perform a penetration test without providing output of requirements analysis and

threat modeling activities
• Perform penetration testing in-line with the deployment pipeline

Expert ranking Median IQR

Effectiveness 4.0 1.50 Higher scores indicate a higher level of effectiveness

Impact on delay 2.0 1.50 Higher scores indicate a lower friction or delay

Financial consequences 2.0 1.25 Higher scores indicate lower financial consequences

Performing manual security review

The activity of performing a manual security review is viewed as an approach to increase the security
of software [20][43]. The activity consists of a manual review taking into account the security
requirements and outcomes of the threat modeling phases to ensure that the required security
measures are implemented correctly. Stakeholders could be invited to also perform security tests
during the product review, also referred to as a demo, providing the chance to break the system’s
security and try things that intruders or deceptive users would do to see how the system reacts [47].

Expert ranking

The expert panel generally perceive manual security reviews to only be moderately effective
(mdn=3.0, IQR=1.50). Some experts indicated that it can act as an effective way to get a quick insight
in the actual security level of an application given that this is not just performed based on
documentation but consists of an actual review of the implementation together with the
development and operations teams. The expert panel does agree that this activity is expected to
increase significant delays (mdn=2.0, IQR=1.00) in the DevSecOps process because it requires time
from the development resources. The financial impact is expected to be moderate (mdn=3.0,
IQR=1.25).

Quick facts

Why should you do this?
• Gain insight in the way security requirements are actually implemented in an

application

What to avoid? • Do not base the manual security review purely on documentation

Expert ranking Median IQR

Effectiveness 3.0 1.50 Higher scores indicate a higher level of effectiveness

Impact on delay 2.0 1.00 Higher scores indicate a lower friction or delay

Financial consequences 3.0 1.25 Higher scores indicate lower financial consequences

6160 Master thesis
Lean security

Master thesis
Lean security

Secure the CI/CD pipeline

The CI/CD pipeline, forming the technical backbone of DevSecOps activities, may itself be
vulnerable to security attacks or misconfigurations [56]. The security of a deployment pipeline may
be threatened by malicious code being deployed through the pipeline or by allowing direct
communication between components in the testing and production environments [57]. Therefore it
is important to ensure the CI/CD pipeline itself is properly secured and that proper role based access
permissions and auditing is performed against the automated activities included in the pipeline.

When looking at the security of the pipeline three distinct scenarios play a role: (a) the pipeline may
deploy an artefact which has not been validated, (b) an artefact may be deployed without going
through the complete pipeline or (c) the production environment may be accessible from a different
environment. The objective of securing the CI/CD pipeline should be to provide assurance that the
pipeline is secure against attacks and cannot be made to behave in a way that is not the intended
one.

Expert ranking

There is some debate about the effectiveness, delay and financial cost of securing the CI/CD pipeline
within the expert panel. Overall they believe this activity to be very effective (mdn=4.0, IQR=1.50) ,
some experts pointed out that the CI/CD pipeline is the central axe along which DevSecOps activities
are performed and therefore securing it is key. It is also assumed that a base level of security can be
fairly easily attained because most CI/CD related tools and products have some protections already
built-in to them. Delay to the DevSecOps process is expected to be low (mdn=4.0, IQR=1.25)
because securing the pipeline is a parallel process and is not subject to continuous change. The
financial cost of this activity is determined by the complexity of the pipeline and the chosen depth of
the security controls and therefore moderate financial impact can be expected (mdn=3.5, IQR=1.25).
Costs to be account for include the time required to implemented the selected controls and potential
associated licensing costs.

Frameworks

OWASP SAMM v2.0 Implementation: Secure build & deployment

BSIMM v10 Deployment: Configuration & Vulnerability management

Quick facts

Why should you do this?
• If the CI/CD pipeline plays an important role in developing and subsequently

deploying applications

What to avoid? • Not leveraging the default security controls build into the tooling

Expert ranking Median IQR

Effectiveness 4.0 1.50 Higher scores indicate a higher level of effectiveness

Impact on delay 4.0 1.25 Higher scores indicate a lower friction or delay

Financial consequences 3.5 1.25 Higher scores indicate lower financial consequences

6362 Master thesis
Lean security

Master thesis
Lean security

Use of automated activities
Performing automated security testing

The objective to automate security controls and verifications where possible is a core concept in
DevSecOps [46]. To achieve this a wide variety of tools are integrated with the automated
deployment pipeline [44]. An option to speed up implementation and adoption is to leverage self-
managed, automated and scalable security services provided by SecaaS platforms [45].

The DevSecOps expert panel point out the importance of the “Fail fast” principle when evaluating
efficiency gains through automated security testing. These automated security tests should be
integrated early in the development cycle allowing short feedback loops on security. It is important
to keep in mind that good APIs for automated security testing tools can significantly facilitate
organisational processes. Overall the implementation should be understandable to developers and
the expected outcomes should be included in the definition of done.

Due to the breadth and depth of this activity three detailed security activities were derived from this
activity.

Frameworks

OWASP SAMM v2.0 Verification: Security testing

BSIMM v10 SSDL touchpoints: Security testing

Design factors Relevance

Leverage SecaaS by using cloud provided self-managed, automated and scalable
security services

Integrate the security tools in an automated deployment pipeline

Automate as many security controls and verifications as possible

Ensure the team and management understands and supports the security validations
integrated in the automated deployment pipeline

Fail fast when security validations do not pass

Integrate the validations in the Definition of Done

Ensure APIs (of security verifications) align with organisational processes allowing the
implementation to be easy to understand

Automated testing is geared towards finding implementation bugs but generally not
suited to spot design flaws.

7 of 8
experts

10 of 10
experts

10 of 10
experts

n/aAdded by expert

n/aAdded by expert

n/aAdded by expert

n/aAdded by expert

n/aAdded by expert

Performing automated run-time testing

Automated run-time testing, also referred to as Dynamic Application Security Testing (DAST) is a
testing methodology where an application is tested from the outside. It requires the application to be
running and functional in order to be able to scan for security vulnerabilities.

The limited scope of automated run-time testing is an important drawback of this technique [55]. As
pointed out by an expert on the DevSecOps panel automated run-time testing has issues supporting
newer (web) technologies leading to a severely reduced coverage.

Design factors

To compensate for this limitation one could leverage functional tests by running them through
automated run-time testing tooling allowing the tool to cover a broader set of the application
function. An important note is that in this case the coverage of the scans is dependent on the
coverage of the functional tests [55].

Experts on the DevSecOps panel point out that implementing good automated run-time testing is
challenging when DevOps is not at a proper level (of automation). The recommended approach is to
start small and extend later on by focusing on the most relevant applications.

Expert ranking

The expert panel mostly agrees that automated run-time testing is moderately effective (mdn=3.0,
IQR=1.25). Experts who rated the effectiveness lower have done so indicating that this technique has
become less effective in detecting vulnerabilities in modern technologies (Single Page Applications,
SSO, MFA) and the potential number of high false positives. Those who rated it as very effective
indicated that it provides good direct feedback and is able to cover a large volume of applications.
The delays caused in the DevSecOps process are expected to be limited (mdn=4.0, IQR=0.50)
assuming that the time required to perform a scan is maintained at a low level and the number of
false positives is limited. Implementing these tools to block the pipeline on failures is expected to
cause significant delays. There is debate regarding the financial consequences of automated run-
time testing. Some experts rated this as very low whereas other rated it very high. This can be
explained by the choice of tools and licensing models. The financial impact is considered low if you
opt for using some of the open-source tools available, however it may rise quickly if top-of-the-line
commercial products are selected.

6564 Master thesis
Lean security

Master thesis
Lean security

Design factors Relevance

Perform automated run-time testing at four levels: (1) pre-authentication scanning, (2)
post-authentication scanning, (3) independent backend scanning and (4) complete
workflows

Ensure automated run-time testing is implemented for a broad scope of test scenarios

Ensure proper unit tests are in place to optimise run-time testing efficiency

Start small, extend later on.

Get DevOps to a proper maturity level before implementing automated run-time
testing.

8 of 8
experts

8 of 8
experts

7 of 8
experts

n/aAdded by expert

n/aAdded by expert

Quick facts

Why should you do this? • If you need to cover a large number of web applications

What to avoid? • Implement block on fail

Expert ranking Median IQR

Effectiveness 3.0 1.25 Higher scores indicate a higher level of effectiveness

Impact on delay 4.0 0.50 Higher scores indicate a lower friction or delay

Financial consequences 3.0 1.50 Higher scores indicate lower financial consequences

Performing automated static testing

During automated static testing, also referred to as Static Application Security Scanning (SAST), the
application code is analysed with the purpose of identifying potential security or other quality related
errors. These errors are usually related to coding mistakes or bad coding practices which may
introduce vulnerabilities in the application under development.

It is argued that this verification should be performed during the software development to allow
shorter feedback loops in the development sprints [47]. By integrating an automated code review
into the development process appropriate feedback can be provided to the software developers of
interest, using open source and commercial static analysis tools [12]. The extent of static code
analyses in the CI chain is recognised in the DevSecOps maturity model as one of the four important
axes to achieve security aspects [20].

Design factors

An important design factor for automated code review is the speed and accuracy of the feedback
provided to developers. If the feedback loop created through automated code review is slow
developers are less likely to include it in their workflow or will use it less frequently. Additionally, if the
results of the automated code review contain too many false positives the developer will need to
spend a lot of time sifting through the findings and is more likely to miss important findings or to
dismiss the results all together [55].

According the the DevSecOps expert panel it is important to ensure sufficient code coverage by
automated static testing. Static testing performed on modules may not properly follow complete
flows when applications are not scanned as a whole. It is also important to require independent
justification upon marking findings as false positives and to perform adequate follow-up to ensure
fixes genuinely address the root cause of the issue. Building a good process around static testing is
key, one approach which has proven useful is to implement so called build breakers which stop the
CI/CD pipeline upon discovery of new severe issues.

One should consider to prioritise efforts on static code analysis for the most relevant applications due
to the time and effort required to get it right.

Expert ranking

There is debate among the experts regarding the effectiveness of performing static security testing
(mdn=3.5, IQR=2.0). The majority believes however that it is very (N=5, 36%) to highly effective (N=4,
14%) while one expert find it highly ineffective (N=1, 12%). The main limitation to the effectiveness of
static testing is the potential high number of false positives. These same false positives are also the
main source of delay, in general running the tooling can be fairly fast however managing the false
positives can become time consuming, certainly when used in blocking mode where the pipeline is

6766 Master thesis
Lean security

Master thesis
Lean security

interrupted upon issues being detected. The impact of false positives can be reduced by performing
a baseline scan to suppress false positives and creating global lists of accepted false positives. This
explains the slight disagreement between the experts (mdn=3.0, IQR=1.50). A significant financial
impact is expected (mdn=2.5, IQR=1.00) as most experts point out that there is a lack of good open-
source tooling and the commercial products can become quite expensive.

Design factors Relevance

Minimise the number of false positives resulting from static testing

Independent justification of whether a false positive is really false and whether the fix
genuinely addresses the cause

Ensure code coverage (applications should be tested as a whole, not scans run on
separate modules, otherwise the static testing will not properly follow flows).

Should prioritise the most relevant applications first since this takes a lot of time.

Good process is key, build breakers are important.

8 of 8
experts

n/aAdded by expert

n/aAdded by expert

n/aAdded by expert

n/aAdded by expert

Quick facts

Why should you do this? • Provide fast feedback loops for developers on common secure coding violations

What to avoid?
• Not tuning the rulesets by performing a baseline scan or establishing lists of

globally accepted false positives

Expert ranking Median IQR

Effectiveness 3.5 2.00 Higher scores indicate a higher level of effectiveness

Impact on delay 3.0 1.50 Higher scores indicate a lower friction or delay

Financial consequences 2.5 1.00 Higher scores indicate lower financial consequences

Integrate security tests in unit testing

Security testing should start at the feature or component level, before any system integration is
performed. Tests should cover both unauthorised misuse and violations of the assumptions on which
the component was build [12].

Design factors

It is recommended to include tests to verify that security requirements are correctly implemented for
a given feature. This applies not only to specific security features but also for non functional security
requirements of other features that are used in security contexts. Several experts on the DevSecOps
panel indicated that security testing should start as early as possible in the development cycle (shift
left) and that good coverage of security aspects in unit testing allows, in combination with other
activities, the security experts to focus on the complex aspects of security.

Expert ranking

Security experts strongly disagree on the effectiveness of this activity. Half of the expert panel
indicated that this activity is highly effective however some other experts rated it very low explaining
that it only works in theory and is not realistic in practice. A prerequisite to this activity are detailed
security requirements from the start of the project and adequate security knowledge on the part of
the developers. Experts are also divided on the delays caused by this activity (mdn=3.0, IQR=3.50),
however they mostly agree that it has severe financial consequences (mdn=1.0, IQR=1.50).

Design factors Relevance

Consider the team needs to have special security related knowledge

Start early on to avoid bottlenecks when deploying to production

n/aAdded by expert

n/aAdded by expert

Quick facts

Why should you do this?
• Gain deep assurance for very sensitive software features or functions which have

detailed security requirements

What to avoid?

Expert ranking Median IQR

Effectiveness 4.5 2.25 Higher scores indicate a higher level of effectiveness

Impact on delay 3.0 3.50 Higher scores indicate a lower friction or delay

Financial consequences 1.0 1.50 Higher scores indicate lower financial consequences

6968 Master thesis
Lean security

Master thesis
Lean security

Performing continuous monitoring

Performing continuous monitoring can be applied to a variety of system and application aspects and
therefore covers a wide range of detailed activities. Researchers suggest monitoring system-related
data [12] but also software vulnerabilities [58], security metrics [12] and security SLA’s [53]. It is also
recommended to gather security metrics during the SDLC [46] and to maintain an overview of
application behaviour [43].

In addition continuous monitoring is cited as relevant in the context of demonstrating compliance
with policies [20]. It is important (when automating security controls) to be able to generate evidence
on demand that controls are working and that they are effective [46]. To that end, complete coverage
of all assets and resources must be ensured.

Metrics gathered through continuous monitoring are preferably be exposed to development and
operations teams through so called self-service monitoring and alerting [59]. According to the
DevSecOps expert panel this is key in supporting the concept of shifting security to the left” and plays
a role in preventing unneeded escalations while allowing teams to become self-organised when it
comes to fixing issues.

Continuous monitoring itself should be implemented as code allowing a versioned and repeatable
deployment of the required monitoring infrastructure (monitoring-as-code) [59].

Members of the DevSecOps expert panel pointed out that automated deployment is a key enabler
to become successful at automated continuous monitoring. Without it the challenge to ensure the
correct monitoring configuration is applied to each resource rises.

Frameworks

OWASP SAMM v2.0 Governance: Strategy & Metrics

BSIMM v10 Governance: Strategy & Metrics

Design factors Relevance

Ensure continuous monitoring covers a wide range of resources and metrics including
logical security, availability and intrusions

Leverage monitoring as code to establish a versioned and repeatable deployment of
monitoring infrastructure

9 of 9
experts

8 of 8
experts

Performing continuous monitoring of security SLAs

Continuous monitoring of security service level agreements once components are deployed and
running allows reaction measures to be taken in case of potential or actual violations [53]. These
results can be fed back to development to provide learning opportunities. There are also tools being
developed which allow dynamic adaptation of multi-cloud applications to ensure the security status
included in security service level agreements is maintained allowing early reaction to possible
security incidents. The DevOps team should verify that the metrics defined for the security controls
are reaching the target levels thereby ensuring that security and privacy levels of multi-cloud
applications are attained [54].

Expert ranking

The expert panel has not reached agreement on the ranking of this activity. Most experts agree that
monitoring the security SLAs makes sense but only if you can do something with this information
from a security perspective. Therefore they rate is as moderately effective (mdn=3.0, IQR=2.00). The
activity is only seen as effective in organisation with multi-cloud platforms where the capability exists
to move resources from one provider to another in case of a security failure. Delays on the
DevSecOps process are considered limited assuming the monitoring is automated and running in
parallel. The financial consequences are expected to be moderate (mdn=3.5, IQR=1.75).

Quick facts

Why should you do this?
• To leverage the capabilities offered by multi-cloud platforms to react to security

failures by moving resources

What to avoid?

Expert ranking Median IQR

Effectiveness 3.0 2.00 Higher scores indicate a higher level of effectiveness

Impact on delay 4.0 2.00 Higher scores indicate a lower friction or delay

Financial consequences 3.5 1.75 Higher scores indicate lower financial consequences

7170 Master thesis
Lean security

Master thesis
Lean security

Performing continuous monitoring of security metrics throughout
the SDLC using CI/CD tooling

Leveraging Continuous Integration and Continuous Deployment (CI/CD) tools to gather security
relevant metrics which can be gathered to identify issues such as coding mistakes or vulnerable
dependencies [46]. This enables organisations to track threats and vulnerabilities in real-time and
allows continuous evaluation of required versus achieved security levels [42].

Expert ranking

Gathering security metrics by levering CI/CD tooling is considered a highly effective security activity
by the vast majority of the security experts (mdn=4.0, IQR=1.00) assuming that the metrics are
carefully chosen. The delays caused by this activity are considered limited (mdn=4.0, IQR=1.50) as
the heavy lifting is mostly done through other activities in the area of continuous monitoring. This
activity leverages the outputs generated by other tools to provide indicators of security and
knowledge levels in teams. The experts believe there is a moderate financial impact related to this
activity which is mainly driven by effort to implement and maintain it (mdn=3.0, IQR=1.50).

Quick facts

Why should you do this?
• To identify security issues in software
• To measure security knowledge of teams and identify blind spots

What to avoid? • Collect metrics without a clear strategy

Expert ranking Median IQR

Effectiveness 4.0 1.00 Higher scores indicate a higher level of effectiveness

Impact on delay 4.0 1.50 Higher scores indicate a lower friction or delay

Financial consequences 3.0 1.50 Higher scores indicate lower financial consequences

Quick facts

Why should you do this? • To gain security knowledge from system behaviour

What to avoid?

Expert ranking Median IQR

Effectiveness 4.0 1.50 Higher scores indicate a higher level of effectiveness

Impact on delay 4.0 1.50 Higher scores indicate a lower friction or delay

Financial consequences 3.0 0.75 Higher scores indicate lower financial consequences

Design factors Relevance

Ensure that other enablers such as automated deployments and configuration
management are implemented

n/aAdded by expert

Performing continuous monitoring of system metrics using
automated tools

Continuously monitoring metrics such as resource usage and reaction times allows potential
detection of malicious activity. System-related information such as CPU usage and memory usage
can be gathered and stored for further analysis using automated tools [12].

Design factors

Experts point out that automated deployments and configuration management are required to make
effective use of this activity.

Expert ranking

There is some debate regarding the effectiveness of this activity however the majority of the experts
perceives it as being very effective (mdn=4.0, IQR=1.50) without cause a significant delay in the
process (mdn=4.0, IQR=1.50). The experts agree that there are moderate financial consequences to
be expected mainly driven by efforts to implement and maintain it (mdn=3.0, IQR=0.75).

7372 Master thesis
Lean security

Master thesis
Lean security

Performing continuous monitoring of security controls

This activity refers to implementing specific monitoring solutions to determine the effectiveness of
security controls for a given application such as SSL settings, access control mechanisms and
vulnerable dependencies. This allows the generation of evidence on demand that controls are
working and that they are effective [46].

Design factors

Experts on the panel pointed out that this activity is especially relevant in highly regulated
environments and where formal controls can and should be tracked.

Expert ranking

The expert panel strongly agrees that performing continuous monitoring of security controls is highly
effective (mdn=4.0, IQR=0.50) and agree that it introduces limited delays (mdn=4.0, IQR=1.00).
Some debate exists on the financial consequences however a moderate financial consequence,
mainly driven by the effort to implement and maintain the solution, is expected (mdn=3.0, IQR=1.50).

Quick facts

Why should you do this? • To gain insights on the effectiveness of security controls

What to avoid?

Expert ranking Median IQR

Effectiveness 4.0 0.50 Higher scores indicate a higher level of effectiveness

Impact on delay 4.0 1.00 Higher scores indicate a lower friction or delay

Financial consequences 3.0 1.50 Higher scores indicate lower financial consequences

Design factors Relevance

Ensure that formal controls are tracked

Especially important in highly regulated environments n/aAdded by expert

n/aAdded by expert

Performing continuous monitoring of application behaviour

Continuous monitoring of application behaviour, such as input and output, may assist in detecting
malicious activity by identifying changes in patterns [60]. This activity is commonly implemented
through tools such as Web Application Firewalls (WAF) or run-time application security protection
(RASP).

Design factors

Experts on the panel point out that the DevOps team needs to have a good understanding of normal
application behaviour before attempting to identify deviations.

Expert ranking

The expert panel strongly agrees on the effectiveness of performing continuous monitoring of
application behaviour (mdn=4.0, IQR=0.25). There is some debate on the delay and financial impact
caused by this activity however they experts do believe the delay caused will be limited (mdn=4.0,
IQR=1.50) while the financial consequences will be considerable (mdn=2.0, IQR=1.50).

Quick facts

Why should you do this? • To detect abnormal activity in operations

What to avoid?

Expert ranking Median IQR

Effectiveness 4.0 0.25 Higher scores indicate a higher level of effectiveness

Impact on delay 4.0 1.50 Higher scores indicate a lower friction or delay

Financial consequences 2.0 1.50 Higher scores indicate lower financial consequences

Design factors Relevance

A DevOps team should be aware of the normal application behaviour allowing
identification of deviations

n/aAdded by expert

7574 Master thesis
Lean security

Master thesis
Lean security

Provide self-service monitoring capabilities to dev and ops

Providing a flexible monitoring infrastructure allowing teams to configure their monitoring and
alerting services according to their criteria allows ‘fast and continuous feedback from Ops to Dev
[59]. This concept is referred to as ‘you build, you run and now you monitor it’. Such a self-service
monitoring and alerting solution allows breaking silos between dev, ops and security teams by
opening access to key security metrics, enabling a sharing culture and continuous improvement.
When looking at the implementation of such a solution one should strive for a large extend of
automation leading to the concept of ‘monitoring as code’.

Design factors

Self-service monitoring capabilities should allow teams to be self-organised when it comes to fixing
issues. This prevents unnecessary escalations and forms an important enabler for shifting security to
the left.

Expert ranking

Implementing self-service monitoring capabilities is perceived as moderately effective by the experts
(mdn=3.0, IQR=1.25). The activity is however not expected to cause significant delays (mdn=4.0,
IQR=1.50) nor significant financial impact (mdn=4.0, IQR=1.50).

Quick facts

Why should you do this?
• To establish a sharing culture and allow teams to become self-organised with

respect to fixing issues
• To reduce the number of escalations

What to avoid?

Expert ranking Median IQR

Effectiveness 3.0 1.25 Higher scores indicate a higher level of effectiveness

Impact on delay 4.0 1.50 Higher scores indicate a lower friction or delay

Financial consequences 4.0 1.50 Higher scores indicate lower financial consequences

Design factors Relevance

Enable teams to be self-organised when it comes to fix any issues n/aAdded by expert

Implement centralised dashboards

This activity was identified through the DevSecOps expert panel and refers to establishing
centralised dashboards which provide a clear view on security metrics related to secure development
and operations.

Expert ranking

Building centralised dashboards is considered a moderately effective security activity (mdn=3.5,
IQR=1.50) and is expected to cause very limited delays in the DevOps process (mdn=4.0, IQR=1.50).
The experts fully agree that this activity is not expected to cause any significant financial
consequences (mdn=4.0, IQR=0.00). This is under the assumption that the process of gathering and
reporting on the information is fully automated.

Quick facts

Why should you do this? • To provide visibility into security related aspects to a wide variety of stakeholders

What to avoid?

Expert ranking Median IQR

Effectiveness 3.5 1.50 Higher scores indicate a higher level of effectiveness

Impact on delay 4.0 1.50 Higher scores indicate a lower friction or delay

Financial consequences 4.0 0.00 Higher scores indicate lower financial consequences

7776 Master thesis
Lean security

Master thesis
Lean security

Implement automated remediation

Dynamic adaptation and reaction to security incidents has been mentioned in the context of multi-
cloud environments [53]. The principle is to ensure security levels are maintained across multi-cloud
applications by automatically taking required remediation measures on security degradation. Our
DevSecOps expert panel indicated that they have never seen it being effective in practice.

Design factors

Experts point out that manual verification remains important to validate the completeness and
appropriateness of automated remediation.

Expert ranking

The expert panel considers this activity to be moderately effective (mdn=3.0, IQR=1.50). Some
experts point out that getting automated remediation up and running requires attention to potential
breaking changes and that effort is potentially better spent in preventing the issue from occurring.
Automated remediation can only become effective when many other aspects are fully automated.
Due to the emphasis on automation it is not expected that this activity will cause significant delays in
the DevSecOps process (mdn=5.0, IQR=0.50) however it can represent a moderate financial impact
(mdn=3.0, IQR=1.50) driven by licensing costs and effort to implement and maintain.

Quick facts

Why should you do this?
• To leverage existing automated capabilities to automatically react to security

events

What to avoid?
• Solely rely on automated remediation without verifying its effectiveness
• Attempt to implement automated remediation in environments with a low

DevSecOps maturity

Expert ranking Median IQR

Effectiveness 3.0 1.50 Higher scores indicate a higher level of effectiveness

Impact on delay 5.0 0.50 Higher scores indicate a lower friction or delay

Financial consequences 3.0 1.50 Higher scores indicate lower financial consequences

Design factors Relevance

Always manually verify the results from time to time n/aAdded by expert

Frameworks

OWASP SAMM v2.0 Operations: Incident management

BSIMM v10 Deployment: Configuration management & Vulnerability management

7978 Master thesis
Lean security

Master thesis
Lean security

Performing security configuration automation

Security configuration automation is mentioned several times throughout academic literature for
example in the context of automating software defined firewalls to allow the deployment of
consistent policies across firewalls in an organisation [12]. Security configuration automation is also
referred to as security-as-code allowing the definition of security policies which can be embedded
and enforced throughout the development and operations processes from the project get-go. Such
codified security policies can be activated automatically or manually and stored in a central
repository for reuse on new project [46].

Expert ranking

Performing security configuration automation is seen as a effective approach (mdn=4.0, IQR=0.25)
while causing minimal delays (mdn=4.0, IQR=1.50). The concepts behind configuration automation
and potential best practices are proven, well known and can easily be integrated in existing solutions
such as system configuration automation tooling. There is debate regarding the financial
consequences, mainly driven by the effort to implement and maintain the solution. A moderate
financial impact should be expected (mdn=3.0, IQR=2.00).

Quick facts

Why should you do this?
• To consistently manage security configurations across a wide range and large

volume of devices

What to avoid?

Expert ranking Median IQR

Effectiveness 4.0 0.25 Higher scores indicate a higher level of effectiveness

Impact on delay 4.0 1.50 Higher scores indicate a lower friction or delay

Financial consequences 3.0 2.00 Higher scores indicate lower financial consequences

Frameworks

OWASP SAMM v2.0 Implementation: Secure build

BSIMM v10 Deployment: Configuration management & Vulnerability management

Implement secrets management

This activity was identified through the DevSecOps expert panel and refers to automating the
management of secrets used by applications and infrastructure components.

Expert ranking

Implementing secrets management is perceived as an effective security activity, with half of the
experts (N=5, 50%) rating is as highly effective. They do point out that it may sometimes become
complicated or even theoretically impossible to secure all secrets in an environment. It is important
to pay appropriate attention to ensure the availability of this system and to implement a proper
authorisation model to increase its effectiveness. This activity It is not expected to cause significant
delays (mdn=4.0, IQR=1.50) in the DevSecOps process however, depending on the choice of
product, is expected to have some financial consequences (mdn=3.5, 1.75).

Frameworks

OWASP SAMM v2.0 Implementation: Secure build

BSIMM v10 Deployment: Configuration management & Vulnerability management

Quick facts

Why should you do this?
• To enable organisation wide protection of secrets
• To establish control over secrets such as authorisation and traceability

What to avoid?
• Do not forget to pay special attention to the availability of this system as it is a

critical component

Expert ranking Median IQR

Effectiveness 4.5 2.00 Higher scores indicate a higher level of effectiveness

Impact on delay 4.0 1.50 Higher scores indicate a lower friction or delay

Financial consequences 3.5 1.75 Higher scores indicate lower financial consequences

8180 Master thesis
Lean security

Master thesis
Lean security

Establish artefact and source code registries which are
automatically scanned for vulnerabilities

This activity was added by a member of the DevSecOps expert panel and refers to the actions taken
to continuously scan and approve entries in artefact and source code registries thereby preventing
the use of vulnerable resources in development or operations.

Expert ranking

Experts perceive this activity to be very effective (mdn=4.0, IQR=1.00) and is expected to cause
moderate delays (mdn=3.0, IQR=1.50) specifically if manual verifications are required. There are no
significant financial consequences anticipated (mdn=4.0, IQR=1.50) beyond some licensing costs for
the tooling.

Quick facts

Why should you do this? • Prevent developers from leveraging vulnerable components in their applications

What to avoid? • Manual verifications

Expert ranking Median IQR

Effectiveness 4.0 1.00 Higher scores indicate a higher level of effectiveness

Impact on delay 3.0 1.50 Higher scores indicate a lower friction or delay

Financial consequences 4.0 1.50 Higher scores indicate lower financial consequences

Manage digital supply chain

During this research activities were identified which relate to managing the risks originating from
using external components in the software development process. These components are not under
the direct control of the organisation and any weaknesses in them may significantly impact the
security of the systems build on top of them. Therefore the choice was made to group these activities
under the umbrella of ‘managing the digital supply chain’.

Frameworks

OWASP SAMM v2.0 Implementation: Secure build

BSIMM v10 Deployment: Configuration management & Vulnerability management

Implement automated container security scanning

This activity was added by a member of the DevSecOps expert panel and refers to implementing
automated security scanning of container images and configuration for known vulnerabilities and
weaknesses preventing vulnerable images or insecure configurations to be used as a basis for
development or operations.

Expert ranking

Automated container security scanning has been rated as a very effective security activity by the
expert panel (mdn=4.0, IQR=1.25). However experts do point out that container scanning is only a
part of the puzzle. In principle container scans are very fast to execute, not causing significant delays
(mdn=4.0, IQR=0.00). Some financial consequences are anticipated (mdn=3.5, IQR=1.00).

Quick facts

Why should you do this? • To detect vulnerabilities or vulnerable configurations in container images

What to avoid?

Expert ranking Median IQR

Effectiveness 4.0 1.25 Higher scores indicate a higher level of effectiveness

Impact on delay 4.0 0.00 Higher scores indicate a lower friction or delay

Financial consequences 3.5 1.00 Higher scores indicate lower financial consequences

8382 Master thesis
Lean security

Master thesis
Lean security

Performing automated software composition analysis

Automated software composition analysis is a technique where the third party libraries and code on
which an application depend are verified for known vulnerabilities [20]. This is achieved by
comparing the components and their versions against a database of known vulnerabilities. It is
generally accepted that the eco system of dependencies on which applications are build may
introduce significant risk to an application over the course of its entire lifespan. Therefore automated
software composition analysis should be performed continuously over time and not only during the
development cycle. This activity is closely related to the concept of controlling open source risks [43].

Design factors

Several experts on the DevSecOps panel mentioned that ensure that only approved libraries can be
used during development time is an approach to reduce the problem at the source. However this
does not provide coverage for vulnerabilities which are detected while an application is active in a
production environment and not subject to development activities. A process to handle new
vulnerabilities is required to ensure proper prioritisation and sign-off. Experts recommend to start
with the most critical applications first as the potential fall-out may be significant.

Expert ranking

Performing automated software composition analysis is a moderately effective security activity
(mdn=3.0, IQR=1.25), mainly due to the potential overload of information. The technique is very
capable of findings security weaknesses however verification of the applicability to the context of the
application is required and may often indicate that the vulnerable function in the dependency is not
actually used in the context of the application. It may introduce a moderate delay in the DevSecOps
process (mdn=3.0, IQR=1.00) if applications have many dependencies and a full scan is expected on
every build. A moderate financial impact is expected (mdn=3.0, IQR=1.50) mainly due to effort
related to verifying false positives and placing results in the context of the application. Treating the
identified issues late in the development or operations process may however represent considerable
effort.

Design factors Relevance

(Make use of) Approved libraries

Start with the most critical (end-user facing) applications first.

Establishing a process to handle new vulnerabilities is important. n/aAdded by expert

n/aAdded by expert

n/aAdded by expert

Quick facts

Why should you do this? • To detect vulnerabilities in libraries and dependencies used by software

What to avoid?
• Requiring a full scan of all dependencies on every build in continuous

deployment environments

Expert ranking Median IQR

Effectiveness 3.0 1.25 Higher scores indicate a higher level of effectiveness

Impact on delay 3.0 1.00 Higher scores indicate a lower friction or delay

Financial consequences 3.0 1.50 Higher scores indicate lower financial consequences

8584 Master thesis
Lean security

Master thesis
Lean security

Part four: Results

This part of the paper provides an overview of the results obtained during this research project. It
consists of the following sections:

• Answers to research questions: presents the answers to the research questions as initially
proposed in the first part of this paper

• Conclusion: presents the conclusions drafted based on the outcome of this research

• Limitations: presents the limitations to which this research was subject

• Future research: proposes topics for future work

Answers to research questions
At the start of this research project three research questions were formulated to provide an answer to
the challenge on how to integrate security assurance activities in DevOps without creating friction. As
a foundation for this research the first question aimed to provide an agreed definition on DevOps
and DevSecOps. The proposed definitions were derived from academic papers [10][22] and
presented to a panel of 10 DevSecOps experts out of which 7 agreed on the proposed definitions.
The details can be found in table 7 (Results on the validation of the proposed definitions for DevOps
and DevSecOps). These results allow us to answer research questions 1a and 1b as follows:

RQ1a: What is the definition of DevOps?

DevOps is a development methodology aimed at bridging the gap between Development and
Operations, emphasising communication and collaboration, continuous integration, quality
assurance and delivery with automated deployment utilising a set of development practices.

RQ1b: What is the definition of DevSecOps?

RuggedOps (DevSecOps): “Rugged” describes software development organisations that have a
culture of rapidly evolving their ability to create available, survivable, defensible, secure, and resilient
software.

Subsequently this research set out to identify a set of security activities and design factors which are
relevant in the context of DevSecOps. This set of relevant security activities and design factors was

Master thesis
Lean security87

“treating security as a “bolt-on” to the end of the
process is far costlier and can damage the relationship

between security and development teams“

Francois Raynaud, 2017 [44]

established through a literature review followed by an expert validation and elaboration session
involving 10 DevSecOps experts. This resulted in a set of 29 validated security activities on which
there is strong agreement between the experts on their relevance to DevSecOps. This allowed us to
answer the second research question as follows:

RQ2: Which set of security activities and design factors relevant to DevOps processes can be
distinguished from academic literature?

A total of 31 security activities (table 8) and 34 design factors (table 9) identified through literature
research are considered relevant in the context of security for DevOps. During the validation and
elaboration the expert panel indicated one activity to be irrelevant to DevSecOps (-1) and added 3
additional activities (+3) bringing the total on 33 security activities. The expert panel also added an
additional 53 design factors bringing the total number of design factors to 87.

The third and final research question for this research project aims to rank the identified security
activities based on effectiveness and delay caused in the process of continuous deployment by a
group of practitioners. The results of the previous research question were prioritised by a group of 8
DevSecOps experts during a Group Support Session (GSS), the results of which can be consulted in
table 10 (Results of the prioritisation of security activities by the expert panel) allowing us to answer
research question 3 (RQ3) as follows:

RQ3: How do the identified security practices and activities rank in terms of effectiveness and delay
from a practitioner point of view?

The security activities, grouped into the categories of collaboration, use of automated activities and
use of non-automated activities, have been ranked by the experts as presented in table 11 (prioritised
list of security activities) according to the following three aspects:

Relevance: an indication of the number of experts who perceived the activity as relevant to
DevSecOps. This score was obtained during the second phase of the process

Effectiveness: an indication of the degree to which the expert panel believes the activity is
contributing to the security of the software under development

Delay: an indication of the degree to which the expert panel believes the activity causes delays in the
development or operations process

Collaboration

Performing continuous
feedback from production
to development

This activity refers to continuously feeding security
metrics and information on security incidents from
production back to development.

Provide security training
This activity refers to training a wide range of stake-
holders such as developers, architects and product
owners on security aspects.

Establish security satellites

This activity refers to creating a network of security
savvy people throughout the various teams
involved in software development. These people
are regularly referred to as security champions.

Practice incident response
This activity refers to practicing incident response
through red-team exercises and security drills.

Establish a security
mindset across the
organisation

This activity refers to actions taken to increase the
attention and awareness on security related aspects
of secure development and operations across both
operational and managerial levels of an
organisation.

Use of automated activities

Performing automated
security testing

This activity refers to aspects of security testing
which can be automated thereby providing
actionable information.

Performing automated
run-time testing

This activity refers to the dynamic, interactive
testing of a deployed application using automated
tools (DAST)

Performing automated
static testing

This activity refers to code review using automat-ed
tools to detect common vulnerability patterns
(SAST).

Integrate security tests
in unit testing

This activity refers to leveraging unit testing to
perform security-oriented tests such as boundary
testing.

Relevance

added by expert

Effectiveness

Delay

Financial

1.25

1.50

2.00

IQR

Relevance

9 of 10 experts

Effectiveness

Delay

Financial

1.00

1.50

0.50

IQR

Relevance

10 of 10 experts

Effectiveness

Delay

Financial

1.00

0.50

1.50

IQR

Relevance

7 of 10 experts

Effectiveness

Delay

Financial

1.25

1.50

1.50

IQR

Relevance

8 of 10 experts

Effectiveness

Delay

Financial

1.25

0.50

1.50

IQR

Relevance

8 of 10 experts

Effectiveness

Delay

Financial

2.00

1.50

1.00

IQR

Relevance

9 of 10 experts

Effectiveness

Delay

Financial

1.25

1.50

1.00

IQR

Relevance

10 of 10 experts

Relevance

9 of 10 experts

Effectiveness

Delay

Financial

2.25

3.50

1.50

IQR

Table 11: Prioritised list of security activities

8988 Master thesis
Lean security

Master thesis
Lean security

Use of automated activities (continued)

Performing continuous
monitoring

This activity refers to actions enabling a continuous
view on various security aspects of development
and operations activities.

Performing continuous
monitoring of security
SLAs

This activity refers to performing continuous
monitoring to confirm compliance with security
service level agreements for cloud providers.

Performing continuous
monitoring of security
metrics throughout the
SDLC using CI/CD
tooling

This activity refers to leveraging the Continuous
Integration and Continuous Deployment tools to
gather security relevant metrics which can be
monitored to identify risks such as coding mistakes
or vulnerable dependencies.

Performing continuous
monitoring of system
metrics using
automated tools

This activity refers to continuously monitoring
metrics such as resource usage and reaction times.
Based on patterns in these metrics malicious activity
could potentially be detected.

Performing continuous
monitoring of security
controls

This activity refers to implementing specific
monitoring solutions to determine the effectiveness
of security controls for a given application such as
SSL settings, access control mechanisms and
vulnerable dependencies.

Performing continuous
monitoring of
application behaviour

This activity refers to continuous monitoring of
application behaviour such as input and output to
determine changes in patterns which may indicates
malicious activity. This activity is commonly
implemented through tools such as Web
Application Firewalls (WAF).

Provide self-service
monitoring capabilities
to dev and ops

This activity refers to building monitoring
capabilities so that they allow dev and ops to define
the collection of metrics, definition of thresholds
and alerts themselves making it a shared
responsibility.

Implement centralised
dashboards

This activity refers to establishing centralised
dashboard which provide a clear view on security
metrics related to secure development and
operations.

Relevance

9 of 10 experts

Relevance

8 of 9 experts

Effectiveness

Delay

Financial

2.00

2.00

1.75

IQR

Relevance

7 of 9 experts

Effectiveness

Delay

Financial

1.00

1.50

1.00

IQR

Relevance

5 of 9 experts

Effectiveness

Delay

Financial

1.50

1.50

0.75

IQR

Relevance

8 of 9 experts

Effectiveness

Delay

Financial

0.50

1.00

1.50

IQR

Relevance

8 of 9 experts

Effectiveness

Delay

Financial

0.25

1.50

1.50

IQR

Relevance

8 of 9 experts

Effectiveness

Delay

Financial

1.25

1.50

1.50

IQR

Relevance

added by expert

Effectiveness

Delay

Financial

1.50

1.50

0.00

IQR

Table 11: (Continued.) Prioritised list of security activities

9190 Master thesis
Lean security

Master thesis
Lean security

Practice Activity L2 Activity

A security practice is a collection of
activities can be grouped based on
existing similarities within activities

A security activity focuses on achieving
a small, well-defined goal that has a
tangible output.

Detailed security activity which is
derived from L1 activities.

Use of automated activities (continued)

Implement automated
remediation

This activity refers to actions enabling a continuous
view on various security aspects of development
and operations activities.

Performing security
configuration automation

This activity refers to automating security
configurations (hardening) throughout the lifecycle
of an environment.

Implement secrets
management

This activity refers to automating the management
of secrets used by applications and infrastructure
components.

Manage digital supply
chain

This activity refers to actions taken to manage the
risks introduced through the use of external
components which are not under the direct control
of the organisation.

Establish artefact and
source code registries
which are automatically
scanned for
vulnerabilities

This activity refers to the actions taken to
continuously scan and approve entries in artefact
and source code registries thereby preventing the
use of vulnerable resources in development or
operations.

Implement automated
container security
scanning

This activity refers to implementing automated
security scanning of container images and
configuration for known vulnerabilities and
weaknesses preventing vulnerable images or
insecure configurations to be used as a basis for
development or operations.

Performing automated
software composition
analysis

This activity refers to the verification of all
dependencies (e.g. third-party libraries) for known
vulnerabilities (SCA)

Relevance

9 of 10 experts

Effectiveness

Delay

Financial

0.25

1.50

2.00

IQR

Relevance

added by expert

Effectiveness

Delay

Financial

2.00

1.50

1.75

IQR

Relevance

added by expert

Relevance

added by expert

Effectiveness

Delay

Financial

1.00

1.50

1.50

IQR

Relevance

added by expert

Effectiveness

Delay

Financial

1.25

0.00

1.00

IQR

Effectiveness

Delay

Financial

1.25

1.00

1.50

IQRRelevance

8 of 10 experts

Relevance

10 of 10 experts

Effectiveness

Delay

Financial

1.50

0.50

1.50

IQR

Table 11: (Continued.) Prioritised list of security activities

9392 Master thesis
Lean security

Master thesis
Lean security 9392 Master thesis

Lean security
Master thesis
Lean security

Conclusion
The premise of this research project revolves around the concept that DevOps and security
assurance can reinforce each other when implemented appropriately. Integrating security assurance
activities enables organisations to gain confidence in their security posture [62], improve security
characteristics [12] and may remove an obstacle for the adoption of DevOps in an organisation
[16][17]. It also allows organisations to increased speed of response to security issues [62] and open
the path to leverage concepts such as quality culture and automation for the benefit of security [62].
However this integration must be performed appropriately to avoid the introduction of significant
delays [14] which could potentially prohibit the materialisation of increased organisational
performance [2].

Therefore this research set out to define a framework of relevant security activities enabling an
organisation to integrate security assurance in DevOps with a clear view on the effectiveness but also
the delay caused to the process of continuous delivery.

Based on the results of this research project, as represented in table 11, we conclude that for the most
part traditional security assurance activities remain relevant in DevOps. There was a strong
agreement among the security experts that the identified activities remained relevant in the context
of DevSecOps. Furthermore the activities, while having varying rating in terms of effectiveness and
financial impact, display a similar level of delay.

This leads us to the conclusion that in order to avoid introducing delays in DevSecOps it is not so
much about doing different things as it is about doing things differently. These differences are visible
in the design factors gathered throughout this research and represented in part three of this paper.
Overall the following tenant expresses the difference in approach quite eloquently:

“We prefer automated over manual, repeatable over one-off. ”

Some of the trade-offs which are made in DevSecOps are counterintuitive and radically different from
traditional approaches to information security. Some examples of these are:

• Reduce the detection rate in favour of reducing the number of false positives;

• Prefer short iterative threat modelling exercises at the beginning of each sprint at the expense of
threat model coverage;

• Prefer limiting the available libraries during development to pre-approved versions over pre-
production validations;

• Foster engineering spirit and peer review over quality gates with validation steps;

• Continuously feed information from production to development

• Parallelise slower processes and invest in blue green deployments to roll back when needed.

These trade-offs and differences in approaches are translated into design factors for each of the
security activities and presented in part three of this paper.

Use of non-automated activities

Performing security
requirements analysis

This activity refers to the definition of security
requirements.

Performing threat modeling
This activity refers to performing threat modeling to
establish a common model of an application and
subsequently identifying potential threats.

Performing risk analysis
This activity refers to analysing the threats to an
application in the context of the business impact
and likelihood to establish a risk score.

Establishing security SLA's
for cloud providers

This activity refers to establishing security service
level agreements for cloud providers based on the
security requirements of a given application.

Performing continuous
assurance

This activity refers to continuously validating if the
software of interest is compliant with relevant
regulatory requirements.

Performing manual
security testing

This activity refers to aspects of security testing
activities which cannot be automated and need to
be performed manually.

Performing manual
penetration testing

This activity refers to performing manual
penetration tests.

Performing manual
security review

This activity refers to performing manual security
reviews which is usually a combination of manual
code analysis combined with documentation review
and stakeholder interviews.

Secure the Ci/Cd pipeline

This activity refers to using a set of tools to prevent
any changes such as access control or build street
definitions which may impact the security of the
CI/CD pipeline.

Effectiveness

Delay

Financial

1.50

1.50

1.25

IQRRelevance

8 of 8 experts

Effectiveness

Delay

Financial

0.50

1.00

0.25

IQRRelevance

10 of 10 experts

Effectiveness

Delay

Financial

2.00

2.25

1.00

IQRRelevance

10 of 10 experts

Effectiveness

Delay

Financial

2.00

2.00

0.25

IQRRelevance

9 of 10 experts

Relevance

8 of 10 experts

Effectiveness

Delay

Financial

1.50

1.25

1.25

IQRRelevance

8 of 10 experts

Effectiveness

Delay

Financial

1.50

1.00

1.25

IQRRelevance

8 of 8 experts

Effectiveness

Delay

Financial

0.50

1.00

0.25

IQRRelevance

10 of 10 experts

Effectiveness

Delay

Financial

0.50

1.50

2.00

IQRRelevance

9 of 10 experts

Table 11: (Continued.) Prioritised list of security activities

All of the involved security experts strongly emphasised the aspects of collaboration and knowledge
for people working in DevSecOps teams. One could say that this is an instantiation of solid
engineering practices, in essence DevSecOps is about teams of engineers who gather around a
problem in an attempt to understand and solve it through mutually agreed approaches. It is built on
the concept of combining disciplines and creating a learning culture. The main theme in DevSecOps
is the creation of feedback loops for learning purposes and ensuring you have the right
measurements in place to get the most learnings out of each investment thereby gradually finding
out what works and what doesn’t, while taking into account the relevant security aspects.

Overall the following tenants seem to hold true:

• Share security learning experiences and create a security engineering mindset;

• Shift security responsibility to the teams and create supporting mechanisms to get the job done;

• Leverage security automation whenever possible;

• Establish security measurements to gain insight and learning opportunities;

• When selecting activities and approaches one should favour reducing delay over reducing
financial impact

The identified set of security activities, their ranking in terms of effectiveness, delay and financial
impact and the in-depth design factors presented in this paper can be leveraged by organisations to
model their DevSecOps approach to include security activities based on their characteristics in terms
of effectiveness, delay and financial consequences. The design factors represented in this paper
provide insights in suitable implementations of these activities. The activities and design factors
combined can be used to establish a roadmap for integrating security activities in a DevSecOps
environment and as a benchmarking tool to assess the existing implementation.

As a closing summary a map of DevSecOps activities as identified during this research linked to the
various stages of the DevSecOps process is presented in figure 11.

9594 Master thesis
Lean security

Master thesis
Lean security

Figure 11: Map of DevSecOps activities identified during this research

Future research
Various avenues for future activities were identified during this research project. The framework of
security activities relevant for DevSecOps, developed as an answer to the third research question,
should be tested in real world situations to measure and assess actual usability and to perform
improvements to the framework. This is left as a potential avenue for future research.

Each of the identified security activities identified during this project represent a potential subject for
future research. Such research could focus on establishing complete inventory of design factors and
measure their influence on effectiveness, delay and financial consequences.

In addition an overview of the tooling landscape for each of the identified security activities could be
created to increase the real-world usability of the framework.

A final approach to extend the framework would be to create an extensive mapping between existing
standards such as the Agile Secure Software Framework (SSA), OWASP SAMM and BSIMM but also
to standards such as ISO27000, NIST CyberSecurity Framework or CIS controls.

Limitations
During this research project some limitations were encountered which may influence the validity of
the outcomes. They are listed here for your reference:

• The literature review performed in the scope of this research project focused on relatively narrow
search criteria to keep the number of identified papers within a workable limit given the time
available for this study. Therefore important contributions in the field of agile security and
DevSecOps may be absent in the dataset used for this research;

• The grouping of security activities and design factors was performed by the researcher thereby
potentially introducing bias. This threat has been partially reduced by performing a validation
step with an expert panel;

• A mistake was made during the creation of the survey leading to the design factors for risk
analysis not being validated by the expert panel;

• The results of the elaboration by the expert panel were interpreted by the researcher to extend
the list of identified security activities and design factors. The comments were interpreted by the
researcher and presented to the experts for verification however this was not done through a
formal survey due to time limitations and the risk of “survey fatigue” on the respondents part;

• The prioritisation performed by the expert panel was based on short descriptions of the security
activities, differences in interpretation between the members of the expert panel may have
remained unnoticed and may have influenced the scoring;

• The mapping with OWASP SAMM and BSIMM and the mapping with the various stages of the
DevSecOps process as presented in this paper were not validated by an expert panel;

• The analysis of the prioritisation by the expert panel was performed using fairly simple methods
of descriptive statistics, there was no complete SPSS analysis performed;

• The artefact answering research question 3 was not evaluated in real world environments
therefore the design cycle was not completed.

9796 Master thesis
Lean security

Master thesis
Lean security

1Master thesis
Lean security

Appendices

This section contains additional information for your reference.

198 Master thesis
Lean security

Master thesis
Lean security

Appendix A: Literature review notes
Security Assurance in DevOps methodologies and related environments

(Siewruk et al., 2019b)

This study focuses on the challenges introduced by high speed software development coupled with
cloud capabilities from a security perspective. It states that a good set of practices and tools is lacking
to include IT security issues into the whole production and deployment processes. The paper
describes a proposed approach for large mobile telecommunication operator environments.

The main focus of this paper is on the system architecture to allow an IT security evaluation of the
cloud environment. It tackles this problem from a threat management perspective at a system
component level. The paper refers to Continuous Integration and Continuous Deployment tooling
which allow task automation and infrastructure as code using tools such as ansible or terraform which
perform automated software provisioning and configuration management. The paper continues to
propose an approach to calculate security level metrics of the solutions deployed in the cloud
environment to allow an overall security level to be calculated at a system level.

This research has a focus on assessing the security level of a full stack deployment (network,
infrastructure, application) in cloud environments. Additional attention will be required when
incorporating the results in this study when identifying practices, activities or design factors for
DevSecOps across the complete dataset. Some of the proposed approaches in this study may refer
to mechanisms specific to cloud environments.

Dynamic Security Assurance in Multi-Cloud DevOps

(Rios, Iturbe, Mallouli, et al., 2017b)

This study focuses on the challenges introduced by development and operations of applications
which combine resources across a range of cloud providers. The researchers state that the challenge
of addressing security assurance in such heterogenous applications is challenges and currently not
addressed by the state of the art. The researchers analyse the use of the MUSA framework developed
through EU funded research and propose an approach to Dynamic Security Assurance in multi-cloud
DevOps.

This research has a focus on identifying security requirements and assessing security levels when
combining resources across clouds from various providers. Additional attention will be required
when incorporating the results in this study when identifying practices, activities or design factors for
DevSecOps across the complete dataset. Some of the proposed approaches in this study may refer
to mechanisms specific to cloud environments.

Security practices in DevOps & Software Security in DevOps: Synthesising Practitioners’ Perceptions
and Practices

(A. A. U. Rahman & Williams, 2016a) (A. A. U. Rahman & Williams, 2016c)

We identified two publications related to the same research during the structured search. The paper
titled “Security practices in DevOps” provides a short summary of the results of research described
in the paper titled “Software Security in DevOps: Synthesising Practitioners’ Perceptions and
Practices”. The latter publication was identified as a landmark paper partially influencing the
keywords used during the structured search and providing a starting point for the set of initial codes.

The research revolves around the analysis of a large number of internet artefacts such as blog posts
and video presentations. The researchers identified a set of security practices and activities used to
integrate security in DevOps and developed a survey which ran across nine organisations for further
investigation.

The primary focus of this study is directly aligned with our research and therefore is expected to yield
results which are easy to integrate in the identification of practices, activities or design factors for
DevSecOps (identification of themes).

DevSecOps: A Multi-vocal Literature Review

(Myrbakken & Colomo-Palacios, 2017b)

The scope of this study is to provide an overview of how to implement DevSecOps and aims to list
the benefits gained from DevSecOps but also to provide insight in the challenges. The researchers
believe that implementing security in a way so that it can keep up with DevOps is a challenge but
provides great benefits. During the study the researchers performed a review of all accessible
literature on the topic of DevSecOps (multi-vocal literature review). The result of this review is a
summary of the challenges and the characteristics related to DevSecOps.

The primary focus of this study is directly aligned with our research and therefore is expected to yield
results which are easy to integrate in the identification of practices, activities or design factors for
DevSecOps (identification of themes).

SecDevOps: Is It a Marketing Buzzword?

(Mohan & Othmane, 2016b)

This paper surveys the literature from academia and industry to identify the main aspects of
DevSecOps. The researchers aim to identify the prevailing definition of SecDevOps as a concept and
identify which aspects are commonly included when defining SecDevOps. The main aspects they
found are definition, security best practices, compliance, process automation, tools for SecDevOps,
software configuration, team collaboration, availability of activity data and information secrecy.

32 Master thesis
Lean security

Master thesis
Lean security

The primary focus of this study is directly aligned with our research and therefore is expected to yield
results which are easy to integrate in the identification of practices, activities or design factors for
DevSecOps (identification of themes).

DevOps for Better Software Security in the Cloud

(Jaatun et al., 2017b)

This paper focuses on demonstrating how DevOps can lead to better software security in the cloud.
The researchers describe the changes introduced by DevOps and cloud technologies which ease
development, deployment and operations of software. They state that the major problem with
software security is that it is impossible to know all attacks that the system will be exposed to. As such
they argue that the increased capability to modify the software can be used to quickly respond to
security issues.

The primary focus of this study is directly aligned with our research and therefore is expected to yield
results which are easy to integrate in the identification of practices, activities or design factors for
DevSecOps (identification of themes).

Software Security Activities that Support Incident Management in Secure DevOps

(Jaatun, 2018b)

The focus of this research is to identify how incident management and software development can be
beneficial to ensure there is a second level of defence for security vulnerabilities introduced during
the DevOps cycle. The paper outlines the characteristics of computer security incident management
based on ISO/IEC 27035 and argue that the need for collaboration between incident response teams
and development teams have an increased as a result of the shorter development cycles resulting
from DevOps. The researchers performed an analysis of the 113 BSIMM activities and identified
those which are in their view directly relevant to incident response in a DevOps setting. These
activities were subsequently mapped to ISO/IEC 27035.

This research has a focus on DevSecOps with a specific focus on incident management. Attention will
be required when incorporating the results in this study when identifying practices, activities or
design factors for DevSecOps across the complete dataset.

Self-Service Cybersecurity Monitoring as Enabler for DevSecOps

(Diaz et al., 2019)

This paper investigates the potential for self-service security monitoring to strengthen DevSecOps in
the development and operations of IoT systems. The premise of the authors is that the distributed
and heterogeneous nature of IoT solutions leads to complex development and deployment

pipelines. This complexity is expected to have a negative effect on cybersecurity as a whole and event
monitoring specifically. The researchers believe that self-service cybersecurity monitoring can act as
an enabler to security practices in a DevOps environment by allowing ‘Fast and Continuous
Feedback from Ops to Dev’. The researchers therefore extend a commonly used concept: ‘You build,
you run, and now you monitor. Based on a case study of the proposed solution the authors
demonstrate that feeding back detection of threats in the operational environment facilitates the
developer to make more informed decisions to fix problems or support software evolution.

This research has a focus on DevSecOps with a specific focus on self-service security monitoring.
Attention will be required when incorporating the results in this study with regards to identifying
practices, activities or design factors for DevSecOps as a whole.

Francois Raynaud on DevSecOps

(Carter, 2017b)

In this article a security professional experienced in DevSecOps shares his view on the need for a
DevSecOps approach and what such an approach could look like.

The primary focus of this study is directly aligned with our research and therefore is expected to yield
results which are easy to integrate in the identification of practices, activities or design factors for
DevSecOps (identification of themes).

A systematic mapping study of infrastructure as code research

(Rahman et al., 2019)

This research aims to provide insight in the potential areas for future research related to infrastructure
as code through a systematic mapping study. Due to the nature of this study it did not provide any
contribution to our research questions and was therefore excluded from the dataset.

Threat analysis of software systems: A systematic literature review

(Tuma, Calikli, Ariato, 2018)

This research consisted of a systematic literature review on the existing techniques for threat analysis.
A comparison of 26 methodologies for threat analysis is performed with the objective to providing
an overview of these methodologies in terms of required input, procedural characteristics, outcome
characteristics and ease of adoption. As such this overview can be used by practitioners to select an
appropriate threat analysis methodology for a given context.

54 Master thesis
Lean security

Master thesis
Lean security

An aid in performing an appropriate selection in terms of threat analysis methodology for DevOps is
provided by the researchers through their mapping to appropriate abstraction levels for the various
methodologies. An assessment was performed for each technique in terms of applicability at the
level of requirements, architecture, design and implementation.

This paper goes in depth on one of the activities relevant to DevSecOps and therefore provides
useful contributions in the form of design factors for the activity of threat analysis. Attention should
be paid as the results of this study are not specific to the context of DevSecOps which may lead to
the inclusion of design factors which are not relevant for a high-speed iterative approach. The authors
propose themselves a reflection on the topic of using threat analysis in environment driven by
change:

To conclude, in light of DevOps and Agile, where software development is driven by change, there
are three important aspect where existing analysis techniques have yet to mature: (i) traceability of
analysis in the code base, (ii) composability of analysis outcomes and (iii) threat impact analysis
automation.

DevOps in practice: A multiple case study of five companies

(Lwakatare et al., 2019)

This paper focuses on providing descriptions of how DevOps is implemented in practice with a
specific focus on web application and service development in small and medium sized organisations.
To this end the researchers performed a multiple-case study resulting in an overview of the concept,
related practices and impact of DevOps in this context.

The researchers identified that security is a practice which is of importance to both development and
operations personnel and therefore is also a factor when looking at a deployment pipeline. They
point out that securing the pipeline itself from malicious attackers and scenarios and ensuring
security conformance from a security audit perspective is an important factor to take into account.

This research has no clear focus on DevOps and as such does not describe specific practices or
activities relevant for DevSecOps. This artefact was therefore excluded from our gold set.

Service level agreement-based GDPR compliance and security assurance in (multi)Cloud-based
systems

(Rios, Iturbe, Larrucea, et al., 2019b)

This research focuses on the challenges related to GDPR compliance in Cloud-based systems. The
aim is to define a DevOps framework aimed at supporting Cloud consumers in designing, deploying
and operating Cloud systems that include necessary privacy and security controls. The emphasis is
placed on the definition of security specifications to be included in the system service level
agreement and continuous monitoring and enforcement.

This research has a strong focus on the approach to performing security requirements in the context
of a cloud environment from a GDPR compliance perspective. Upon reading the paper it is clear that
due to this focus most of the proposed approaches are not specific to Dev(Sec)Ops. Care must be
taken when analysing the content of this paper in the context of our research.

A scaffolding design framework for developing secure interoperability components in digital
manufacturing platforms

(Fraile et al., 2018b)

This paper proposes a design tool to support the development of components capable of interacting
with manufacturing assets ranging from physical devices to software applications. This research has
does not have a focus on DevSecOps and therefore it does not propose any security practices or
activities in the specific context of DevSecOps. The proposed approach of building so-called
scaffolding frameworks, also referred to as chassis, is however a concept which is also imagined to be
particularly useful for DevOps in general and DevSecOps specifically as it allows a lot of the complex
work to be performed upfront allowing faster development and implementation of standardised
components based on the chassis.

For the above-mentioned reasons this research is excluded from our gold set, the concept of
developing chassis or scaffolds is however a useful concept for our conclusions and proposals.

Scaling agile software development to Large and Globally Distributed Large-scale organisations

(Putta, 2018)

This paper has a focus on the practices and frameworks for scaling the agile methodology to an
enterprise level, also referred to as enterprise agile. The paper does not propose any practices or
activities relevant in the scope of DevSecOps and therefore is excluded from our gold set.

Amultivocal Literature Review on the use of DevOps for e-learning systems

(Sanchez-Gordon & Colomo-Palacios, 2018)

This paper provides insight in the potential of applying DevOps methodologies in the context of e-
learning solutions. The researchers performed a multi-vocal literature review which pointed out that
within the academic studies little interest in the topic of DevOps for this specific context exists while
the e-learning industry has an increasing but limited interest in the use of DevOps.

The paper does not propose any practices or activities relevant in the scope of DevSecOps and
therefore is excluded from our gold set.

Leveraging Cloud Native Design Patterns for Security-as-a-Service Applications

76 Master thesis
Lean security

Master thesis
Lean security

(Torkura et al., 2017a)

This paper proposes a new approach for designing and deploying Security-as-a-Service applications
through the application of cloud native design patterns. Some security practices and activities for
DevSecOps can be gleaned from this research because these are the scenarios which SecaaS
applications attempt to support through a technical implementation.

This research only has an indirect relationship to DevSecOps. Attention will be required when
incorporating the results in this study with regards to identifying practices, activities or design factors
for DevSecOps as a whole. The results of this study are expected to mainly provide design factors for
the practice of security automation.

A Systematic Mapping Study on Security in Agile Requirements Engineering

(Villamizar et al., 2018)

This paper provides insight in the challenges related to agile requirements engineering. The
researchers point out that while traditionally security requirements engineering is mostly based on
formal and extensive documentation which does not align well with the objectives of agile methods.
During their research they discovered that the focus for the examined papers lies on both the
conceptual specification, document and analytical layers while validation and general quality
assurance topics seemed to be out of scope.

We were able to distinguish the following design factors relevant to the practice of “Security
requirements analysis ”:

• The introduction of new features, for example the addition of a security backlog, and new
activities, such as vulnerability analysis, to the agile method.

• The introduction of new artefacts, for example the extension of a user story to also cover abuser
stories.

• The introduction of guidelines to handle security issues for various stakeholders in the agile
method.

Security Requirements Engineering in the Agile Era: How Does it Work in Practice?

(Daneva & Wang, 2018)

Effectiveness of using card games to teach threat modeling for secure web application
development

(Thompson & Takabi, 2016)

Appendix B: Thematic analysis
mapping table

ID DOI Code Excerpt Notes

1
10.24425/
ijet.2019.126303

Tool
category

SAST (Static Application Security Testing) security scanner

2
10.24425/
ijet.2019.126303

Tool
category

DAST (Dynamic Application Security Testing) security scanner

3
10.24425/
ijet.2019.126303

Tool
category

A system which aim is to detect violations of IT Security
principles, described in [17] can be used as Intrusion Detection
System (IDS)

4
10.24425/
ijet.2019.126303

Opportunity

Discussing the details of the DevOps model is outside the
scope of this paper, but in a nutshell its essence is related to
treating the whole infrastructure as a code written in ansible or
terraform ... This approach allows to prepare the piece of a
source code that is responsible for configuring the virtual
machine, configuring firewall rules, pulling the source code
from the repository and then start the web application server.
Taking IT security into consideration, such an approach has
many advantages like recurrence of operations (a user may
forget to implement one of hundreds firewall rules, however
once prepared program cannot), homogeneity of the
environment and the speed of action.

5
10.24425/
ijet.2019.126303

Challenge

there are also disadvantages to be acknowledged, such as –
broad range of permissions given to a tool that is widely
available. Critical vulnerability found in one element (CI/CD)
which contains provider configuration may put the whole
platform at risk as it can be compromised

6
10.24425/
ijet.2019.126303

Activity

In the whole process of software development, many other
points are related with the identified threats such as identity
management, verification of images used (which are installed
on the servers), software testing or checking for available
updates.

7
10.24425/
ijet.2019.126303

Activity

Therefore, in this case, it is crucial to perform a risk analysis to
identify areas that require special attention. It should be
performed to adopt appropriate security mechanisms that
would minimise the probability of launching a successful attach
on a system.

Risk analysis
is proposed
in the context
of growing
complexity of
platforms
used to run
applications
(e.g.
OpenStack).

98 Master thesis
Lean security

Master thesis
Lean security

ID DOI Code Excerpt Notes

8
10.24425/
ijet.2019.126303

Tool
category

Center for Internet Security is sharing security benchmarks for
OSes like: Centos, Redhat, or Ubuntu

Infrastructure
related

9
10.24425/
ijet.2019.126303

Tool
category

Test suites are available for solutions such as Kubernetes and
Docker

Infrastructure
related

10
10.24425/
ijet.2019.126303

Activity
It is possible to prepare a set of security tests by automated
tools like Tenable Nessus or OpenSource solution like w3af

Infrastructure
related

11
10.24425/
ijet.2019.126303

Tool
category

It is possible to prepare a set of security tests by automated
tools like Tenable Nessus or OpenSource solution like w3af

Infrastructure
related

12
10.24425/
ijet.2019.126303

Activity

If we are considering the security of applications, there are two
sets of tests to be mentioned: automatic security tests (done by
a specific tools) and manual penetration testing (done by a
qualified expert). The latter is always more accurate (a human
can try to examine context which machines typically do not
understand) but in environments like the one we are
mentioning in this paper (where changes are deployed
frequently) it is almost impossible to implement. The main
reason for this is the time which an expert need to perform the
penetration test. During the time required for performing a
single test, a team of developers could prepare several
changes. Thus, waiting for the test to be completed delays the
release of application version which is ready to be put on
production infrastructure (one of the key reasons why to switch
to DevOps methodology is related to shorter releases time).

Application
related

13
10.24425/
ijet.2019.126303

Design
factor

If we are considering the security of applications, there are two
sets of tests to be mentioned: automatic security tests (done by
a specific tools) and manual penetration testing (done by a
qualified expert). The latter is always more accurate (a human
can try to examine context which machines typically do not
understand) but in environments like the one we are
mentioning in this paper (where changes are deployed
frequently) it is almost impossible to implement. The main
reason for this is the time which an expert needs to perform the
penetration test. During the time required for performing a
single test, a team of developers could prepare several
changes. Thus, waiting for the test to be completed delays the
release of application version which is ready to be put on
production infrastructure (one of the key reasons why to switch
to DevOps methodology is related to shorter releases time).

Application
related

14
10.24425/
ijet.2019.126303

Activity
Automatic security tests can be done by several types of
scanners.

Application
related

15
10.24425/
ijet.2019.126303

Tool
category

Static application security testing (SAST – mostly source code
analysis) which conducts a set of tests on the static source
code.

Application
related

16
10.24425/
ijet.2019.126303

Design
factor

Unfortunately, results of the SAST scanning often contain
multiple false positives, for example, identified vulnerability
could be impossible to exploit in the context of running
application.

Application
related

ID DOI Code Excerpt Notes

17
10.24425/
ijet.2019.126303

Tool
category

… Dynamic Application Security Testing (DAST) which conducts
automatic penetration security testing, e.g., by crawling a
website and use well-known web application vulnerabilities in
order to evaluate its security are more accurate.

Application
related

18
10.24425/
ijet.2019.126303

Design
factor

But they (DAST) also have some issues – from which the biggest
one is the limited scope of testing scenarios which depends on
type of tool used

Application
related

19
10.24425/
ijet.2019.126303

Tool
category

There is also another class of automated testing tools –
Interactive Application Security Testing (IAST) which combines
static and dynamic testing. In this paper we do not consider
IAST scanners which are available to use (both open-source
and commercial ones) as they are strongly attached to the
software development strategy.

Application
related

20
10.24425/
ijet.2019.126303

Design
factor

Most of the IAST scanners are being executed during
functional unit testing (where it is known which part of the
source code is responsible for the certain website
functionality). However, it is crucial that the unit tests of
application should be created properly for the IAST to
function.

Application
related

21
10.24425/
ijet.2019.126303

Challenge

The scope and quantity of the processed data and the pace at
which new environments are being built, strengthen our belief
that the current development methodologies lack a generic
way to calculate system overall security level.

Full stack
related

22
10.1109/
cns.2017.8228701

Framework

This paper introduces the MUSA DevOps approach to holistic
security assurance in multi-cloud applications and details
particularly the proposed approach to dynamic assurance at
operation phase

Cloud
oriented

23
10.1109/
cns.2017.8228701

Activity

The MUSA framework comes in form of a single solution that
seamlessly integrates a number of mechanisms supporting
different steps in the (multi-)cloud-based application lifecycle:
application modelling, risk analysis, cloud service selection
based on security controls they offer, automatic generation of
composite Service Level Agreement (SLA), multi-cloud
deployment, and continuous assurance (monitoring and
enforcement of security behaviour) to minimise risks at
runtime.

Cloud
oriented

24
10.1109/
cns.2017.8228701

Activity

Modelling of the application cloud and security requirements:
The first step in the multi-cloud application design is the
specification of the Cloud Provider Independent Model (CPIM)
of the application, a task supported by the MUSA Modeler. The
CPIM, captured in a MUSA extended CAMEL language, is the
specification of the multi-cloud application in a level of
abstraction independent from specific Cloud services and
providers the application will use.

Cloud
oriented

1110 Master thesis
Lean security

Master thesis
Lean security

ID DOI Code Excerpt Notes

25
10.1109/
cns.2017.8228701

Tool
category

Modelling of the application cloud and security requirements:
The first step in the multi-cloud application design is the
specification of the Cloud Provider Independent Model (CPIM)
of the application, a task supported by the MUSA Modeler. The
CPIM, captured in a MUSA extended CAMEL language, is the
specification of the multi-cloud application in a level of
abstraction independent from specific Cloud services and
providers the application will use.

Cloud
oriented

26
10.1109/
cns.2017.8228701

Design
factor

Continuous Risk Assessment that helps in the selection of the
security controls and metrics that will be granted in the Security
SLA and controlled at runtime. The activity follows a
methodology similar to the one described in [25]. It allows for
selecting the relevant threats according to the component
nature, evaluating the technical and business impact of the
threat exploitation, as well as, in order to minimise such impact,
defining the desired countermeasures or controls required
over the cloud services the components will use or be
deployed in. The risk assessment is continuously updated with
the feedback from the continuous monitoring of the controls
behaviour at runtime.

Cloud
oriented

27
10.1109/
cns.2017.8228701

Tool
category

The Cloud services selection relies on the use of the MUSA
Decision Support Tool (DST). In order to take most out of cloud
services combination in terms of security, the DevOps Team is
supported in the selection of cloud services that best match the
security requirements of the multi-cloud application
components. The best match is calculated by comparing the
security controls offered by the cloud services under study
(those previously categorised in the MUSA CSP Data
Repository) with the security requirements of the individual
components.

Cloud
oriented

28
10.1109/
cns.2017.8228701

Activity

Multi-cloud application components security SLA templates
generation. Once the most appropriate cloud service is
selected for each of the components, the DevOps Team will
use the MUSA SLA Generator to automatically create the
Security SLA templates of the components. The Security SLA
templates define the required security Service Level Objectives
(SLOs) of the components in the basis of the SLOs required
over the cloud services that they will use. For this, the MUSA
framework supports the verification of the feasibility of the
components Security SLA templates by checking whether the
cloud service offerings selected in the previous step do offer
such security requirements (in form of security controls). In case
they do not, the MUSA security enforcement agents may be
adopted to offer them.

Cloud
oriented

ID DOI Code Excerpt Notes

29
10.1109/
cns.2017.8228701

Tool
category

Multi-cloud application components security SLA templates
generation. Once the most appropriate cloud service is
selected for each of the components, the DevOps Team will
use the MUSA SLA Generator to automatically create the
Security SLA templates of the components. The Security SLA
templates define the required security Service Level Objectives
(SLOs) of the components in the basis of the SLOs required
over the cloud services that they will use. For this, the MUSA
framework supports the verification of the feasibility of the
components Security SLA templates by checking whether the
cloud service offerings selected in the previous step do offer
such security requirements (in form of security controls). In case
they do not, the MUSA security enforcement agents may be
adopted to offer them.

Cloud
oriented

30
10.1109/
cns.2017.8228701

Activity

Multi-cloud application Composite Security SLA generation. In
this step the DevOps Team is supported in the automatic
generation of the final offered Security SLA of the multi-cloud
application. The Security SLA of the overall application is the
result of the composition of the individual components Security
SLAs, i.e. it considers the Security SLAs of individual
components as well as the component nature (e.g. web server,
database, etc.) and the relationships between the components
(e.g. uses, is deployed in, protects, etc.). The last step in design
process will therefore be the Security SLA composition activity.

Cloud
oriented

31
10.1109/
cns.2017.8228701

Activity

Continuous Monitoring of the application Security SLA once
the components are deployed and running, and early feedback
to development. Finally, at runtime or operation phase, the
MUSA Security Assurance platform starts monitoring the multi-
cloud application based on the final SLAs and the
Implementation plan. In case potential or actual violations of
the SLA are found reaction measures such as remodeling the
application or re-evaluating risks again are recommended.

Cloud
oriented

32
10.1109/
cns.2017.8228701

Tool
category

Continuous Monitoring of the application Security SLA once
the components are deployed and running, and early feedback
to development. Finally, at runtime or operation phase, the
MUSA Security Assurance platform starts monitoring the multi-
cloud application based on the final SLAs and the
Implementation plan. In case potential or actual violations of
the SLA are found reaction measures such as remodeling the
application or re-evaluating risks again are recommended.

Cloud
oriented

33
10.1109/
cns.2017.8228701

Activity

Dynamic adaptation of the multi-cloud application to meet the
security status guaranteed in the Security SLA. The MUSA
Security Assurance platform also supports the dynamic
enforcement of secure behavior of the application by means of
activation of MUSA security enforcement agents. The agents
are activated as a reaction mechanism to a security problem
detected in previous step. The monitoring step is informed on
the status of the activation of the enforcement agents as well as
on the required enforcement events.

Cloud
oriented

1312 Master thesis
Lean security

Master thesis
Lean security

ID DOI Code Excerpt Notes

34
10.1109/
cns.2017.8228701

Activity

Continuous Monitoring of Security SLAs fulfilment: The
objective of this activity is to monitor the runtime security
behavior of the selected multi-cloud application components
in order to early react to possible security incidents.

Cloud
oriented

35
10.1109/
cns.2017.8228701

Activity

Dynamic adaptation and reaction to security incidents: The
goal of this activity is to decide and execute the needed
reaction measures in case security incidents or Security SLA
violations occur. The reaction to security incidents in MUSA
relies on different mechanisms depending on the cause of the
incident and whether it is an alert or a violation. In general, is
up to the DevOps Team the decision of whether to react at the
level of alert before any violation takes place.

Cloud
specific

36
10.1145/2896941.28
96946

Practice

Automation of all activities related to software development is
one of the common software practices used in DevOps culture.
In this paper we refer to this security practice as ‘use of
automation activities’.

DevOps
generic

37
10.1145/2896941.28
96946

Activity

Automation of code review: Code review is the activity of
presenting source code changes for comment, approval, and
improvisation. Automation of code review is the activity of
performing code review and giving appropriate feedback to
the software developers of interest, using open source and
commercial static analysis tools.

DevOps
generic

38
10.1145/2896941.28
96946

Activity

Automation of monitoring: Automation of monitoring refers to
the activity of gathering, reporting, and storing system-related
information such as CPU usage and memory usage for further
analysis using automated tools.

DevOps
generic

39
10.1145/2896941.28
96946

Activity

Automation of software defined firewall: Automation of
software defined firewall is the activity to maintain consistent
policies to manage the settings of the organization’s firewall
using automated tools.

DevOps
generic

40
10.1145/2896941.28
96946

Activity

Automation of software licensing: Software licensing is the
activity of enabling users to purchase, install, and use software
in accordance with a set of conditions set by the software
vendor. We define automation of software licensing as the
activity that ensures users are purchasing, installing, and using
the software as per the conditions set by the software vendor of
interest, using automated tools.

DevOps
generic

41
10.1145/2896941.28
96946

Activity

Automation of testing: Automation of testing refers to the
activity of automatically performing testing tasks, such as test
case management, test monitoring and control, and test data
generation, for different types of tests namely, functional
testing, integration testing, and unit testing.

DevOps
generic

ID DOI Code Excerpt Notes

42
10.1145/2896941.28
96946

Practice

The practice of actively collaborating with other teams is
another practice that software practitioners have stated in the
Internet artifacts. Increased collaboration between
development teams, security teams, and operation teams have
been mentioned in 16 Internet artifacts. In 13 Internet artifacts,
authors reported that instead of operating in silos, the security
team could adopt existing DevOps automation activities inside
the organization and customize existing security tools in a way
that ensures the feedback cycle between the security team,
with the other teams is short. In another Internet artifact, an
author stated developers could learn from the security team
and build or customize the necessary security tools by
themselves.

DevOps
generic

43
10.1145/2896941.28
96946

Practice

Software practitioners referred security training for
development team members to integrate security in DevOps
organizations. This practice was mentioned in three Internet
artifacts. Completing relevant online coursework, attending
developer boot camps, and in-house security awareness
meetings are the three activities that the authors mentioned on
implementing this practice.

DevOps
generic

44
10.1145/2896941.28
96946

Practice
Use of Non-Automated Security Activities We identified 10
security activities from the Internet artifacts of interest.

DevOps
generic

45
10.1145/2896941.28
96946

Activity

Design Review: Design review is the activity of reviewing the
design of the entire software as well as different modules of the
software to identify potential security flaws that might be
exposed at latter stages of software development.

DevOps
generic

46
10.1145/2896941.28
96946

Activity
Input Validation: Input validation is the activity of performing
data validation and rejecting non-conformant data that are
both entering and exiting the software of interest.

DevOps
generic

47
10.1145/2896941.28
96946

Activity

Isolation of Untrusted Inputs: Isolation of untrusted inputs is the
activity of identifying and performing security measures on
resources that are not verified as secure by the system vendor
for example, third party library used to develop the software.

DevOps
generic

48
10.1145/2896941.28
96946

Activity

Performing Compliance Requirements: Performing compliance
requirements is the activity that continuously checks if the
software of interest satisfies the federal regulations set by the
government as per the domain of interest such as healthcare,
and trade organizations.

DevOps
generic

49
10.1145/2896941.28
96946

Activity

Performing Security Configurations: Performing security
configurations is the activity of identifying potential resources
that contain configuration information related to the software
and securing them using security tests.

DevOps
generic

50
10.1145/2896941.28
96946

Design
factor

Performing Security Policies: Performing security policies is the
activity of ensuring all software related information is only
accessible to entities with appropriate level of authorization.

DevOps
generic

1514 Master thesis
Lean security

Master thesis
Lean security

ID DOI Code Excerpt Notes

51
10.1145/2896941.28
96946

Activity

Security Requirements Analysis: Security requirements analysis
is the activity of identifying a set of capabilities that must be
possessed by the software to satisfy a set of specifications that
ensures prevention of intentional or unintentional unauthorized
access to the software.

DevOps
generic

52
10.1145/2896941.28
96946

Activity

Performing Manual Security Tests: Performing manual security
tests is the activity that aims to reduce software risk by applying
two tasks: ensuring that the software’s functionality is properly
implemented and executing risk-based security testing via
simulating an attacker. Security tests such as penetration
testing can be performed in an automated or non-automated
fashion to systematically compromise different parts of the
software. We do not include performing manual security tests
as part of the ‘use of automation activities’ practice as this
activity is non-automated.

DevOps
generic

53
10.1145/2896941.28
96946

Activity
Risk Analysis: Risk analysis is the activity of creating design
specifications relevant to security and later on testing those
design specifications.

DevOps
generic

54
10.1145/2896941.28
96946

Activity
Threat Modeling: Threat modeling is the activity of identifying,
describing, and categorizing threats along with the actors or
agents who are associated with those threats.

DevOps
generic

55
10.1007/978-3-319-
67383-7_2

Practice
It promotes an extension to DevOps’ goal of promoting
collaboration between developers and operators by involving
security experts from the start as well.

DevOps
generic

56
10.1007/978-3-319-
67383-7_2

Principle

The principles that characterize DevSecOps are based on
DevOps and the CAMS principles, culture, automation,
measurement, and sharing, but with the addition of adding
security from the start.

DevOps
generic

57
10.1007/978-3-319-
67383-7_2

Practice

DevSecOps means to include collaboration with the security
team as well as promote a culture where operations and
development also work on integrating security in their work.
That means involving the security team from the planning
stages, and making sure everyone agrees that security is
everyone’s responsibilities

DevOps
generic

58
10.1007/978-3-319-
67383-7_2

Practice
DevSecOps promotes a focus on automating security as well,
to be able to keep up with the speed and scale achieved by
DevOps

DevOps
generic

59
10.1007/978-3-319-
67383-7_2

Design
factor

The aim should be 100% automation of security controls,
where the controls can be deployed and managed without
manual interference

Design factor
for
automation
of security
controls

ID DOI Code Excerpt Notes

60
10.1007/978-3-319-
67383-7_2

Design
factor

Any security functionality not automated in the available tools
will create friction in the DevOps cycle.

Design factor
for
automation
of security
controls

61
10.1007/978-3-319-
67383-7_2

Design
factor

It is important to implement automatic security in a way that
does not hinder DevOps’ agility in any way, which can cause
friction

Design factor
for
automation
of security
controls

62
10.1007/978-3-319-
67383-7_2

Activity
DevSecOps promotes the use and development of metrics that
track threats and vulnerabilities throughout the software
development process

DevOps
generic

63
10.1007/978-3-319-
67383-7_2

Design
factor

Automatic security controls throughout the software
development process means metrics are available to track
threats and vulnerabilities in real-time and that allows the
organization to verify how good an application is on demand

Design factor
for security
monitoring

64
10.1007/978-3-319-
67383-7_2

Opportunity

This allows security controls to be fast, scalable and effective
thus making it possible to keep a high pace for detecting
errors, alerting about the errors, fixing the errors, finding
countermeasures for future errors and forensics to identify why
an error occurred. This not only helps to lower risk and time
spent on errors, but also makes it easier to understand risk and
create policies and procedures. The automation allows
processes to be consistent and repeatable, with predictable
outcomes for similar tests, it allows logging and documentation
to be automatic and letting security tests be run at the push of
a button frees up developers’ time to write code instead of
running tests. This also reduces the risk for human error. The
ability to store security policy templates that is created during a
development process in a central repository means that
security teams don’t need to manually configure every new
environment when starting a new project which frees security
experts from manual, repetitive and unproductive work.

Benefit for
automation
of security
controls

65
10.1007/978-3-319-
67383-7_2

Principle
DevSecOps promotes the inclusion of the security team in the
sharing promoted in a DevOps environment

DevOps
generic

66
10.1007/978-3-319-
67383-7_2

Principle

DevSecOps promotes a shift to the left for security, where it is
to be included in every part of the software development
process. This means that security teams are involved from the
very first planning step and is part of planning every iteration of
the development cycle. It also means security is there to help
developers and operators on security considerations.

DevOps
generic

67
10.1007/978-3-319-
67383-7_2

Opportunity

By involving security experts from the start of the development
process it is easier to plan and execute integration of security
controls throughout the development process without causing
delays or creating issues by implementing security controls
after systems are running.

Benefit for
shift left on
security

1716 Master thesis
Lean security

Master thesis
Lean security

ID DOI Code Excerpt Notes

68
10.1007/978-3-319-
67383-7_2

Activity

Practicing secure DevOps means that organizations have to
develop expertise and processes to best discover, protect
against, and find solutions to threats and risks, preferably
ahead of time. Performing risk assessments from the first
planning stage and continuously before every iteration is
important as a way to prioritize risks, examine controls already
in place and decide which are needed going forward.

DevOps
generic

69
10.1007/978-3-319-
67383-7_2

Activity
Threat modeling is another method where you attack your
system on paper early in the development cycle to identify how
an attack can occur and where it is most likely to happen.

DevOps
generic

70
10.1007/978-3-319-
67383-7_2

Activity

Continuous testing: Automatic security controls at every part of
the software development process is important for security
assurance and allows tests to continuously scan code for
changes, continuously detect anomalies, and automatic
rollback of code when needed.

DevOps
generic

71
10.1007/978-3-319-
67383-7_2

Activity

Monitoring and logging: When automating security controls
throughout the software developing process it is important for
those involved to be able to generate evidence on demand
that controls are working and that they are effective.

DevOps
generic

72
10.1007/978-3-319-
67383-7_2

Design
factor

To that end, it is important to monitor every part of the
inventory and to log every resource.

DevOps
generic

73
10.1007/978-3-319-
67383-7_2

Activity

Security as code: This means to define security policies, for
example integration testing, and network configuration and
access, and write scripted templates or configuration files that
can be implemented into the development process from the
start of the project. These codified security policies can then be
activated automatically according to schedules or be activated
by user (simple push of a button) and be stored in a central
repository for reuse on new projects.

DevOps
generic

74
10.1007/978-3-319-
67383-7_2

Activity

Red-Team and security drills: To stay ahead of possible
attackers, practitioners of DevSecOps create a Red-Team that
runs security drill on the deployed soft-ware. They have the task
of finding and exploiting vulnerabilities in the system. This not
only helps to find security flaws, but improves measurements,
and helps the organization find solutions. The point of the Red-
Team is to have people that never claim something can’t
possibly happen.

DevOps
generic

75
10.1109/
ares.2016.92

Activity

automating tests to detect non-compliance, tracking
compliance breaches through automated reporting of
violations, continuous monitoring and maintenance of a service
catalog with tested and certified services

DevOps
generic

ID DOI Code Excerpt Notes

76
10.1109/
ares.2016.92

Activity
Cash et al. call for integrating into SecDevOps security
scanning and configuration automation.

DevOps
generic

77
10.1109/
ares.2016.92

Activity
automated monitoring, automated deployment pipeline, and
automated testing contribute positively to the security of the
software

DevOps
generic

78
10.1109/
ares.2016.92

Activity
Schneider [6] describes the different stages of dynamic security
scanning that can be used by organizations to integrate
security into DevOps.

Application

79
10.1109/
ares.2016.92

Design
factor

The four levels of scanning are: (1) pre-authentication scanning,
that involves scanning the public attack surface; (2) post-
authentication scanning, that involves session maintenance,
user role management, and logout and auto-relogin detection;
(3) backend scanning of the various application layers
independently; and (4) scanning workflows specific to the
targeted application.

Design factor
for dynamic
security
scanning

80
10.1109/
ares.2016.92

Practice

Vries believes that security activities need to adopt concepts
used in DevOps. The talk advocates the collaboration between
the development team and the business owner of the software
to set the security goals.

81
10.1109/
ares.2016.92

Design
factor

Vries believes that security activities need to adopt concepts
used in DevOps. The talk advocates the collaboration between
the development team and the business owner of the software
to set the security goals.

Design factor
for
collaboration

82
10.1109/
ares.2016.92

Activity
The talk also calls for automating security tests and security
scans in SecDevOps processes.

83
10.1109/
ares.2016.92

Framework

Schneider introduces the SecDevOps Maturity Model
(SDOMM). The model is a manual to help projects achieve
certain security aspects through automation in a continuous
integration (CI) build chain. The model is useful for
organizations willing to make the change to SecDevOps.

84
10.1109/
ares.2016.92

Design
factor

Farroha et al. suggest a set of requirements for compliance
policies which include prohibiting unauthorized access,
maintaining a log for accesses to sensitive data, and
monitoring data operations.

Design factor
for policies

85
10.1109/
ares.2016.92

Activity

Use of automation activities like automated code review,
automated monitoring, automated testing are popular
automation activities for security integration in DevOps
environments.

86
10.1109/
ares.2016.92

Activity

Matteti et al. describe the need to secure Linux containers,
which are considered a break-through for DevOps because of
their contribution to simplifying automated deployments. Linux
containers expose file systems, networks and kernels to
attacks.

Container
technology

1918 Master thesis
Lean security

Master thesis
Lean security

ID DOI Code Excerpt Notes

87
10.1109/
ares.2016.92

Framework

The authors propose the LiCShield Framework that provides
protection to hosts, by confining accesses of containers and
container management daemons to perform only the
operations observed in testing environments and restricting
container operations, by tightening the internal noisy
environment.

Container
technology

88
10.1109/
ares.2016.92

Tool
category

Security tools; monitoring & alerting tools; logging tools

89
10.1109/
ares.2016.92

Activity
Security testing, static analysis and formal verification are some
techniques that may be used to secure a pipeline.

CI/CD
technology
oriented

90
10.1109/
ares.2016.92

Tool
category

Scanning tools, Security frameworks, Results consolidation
tools; Monitoring tools; Logging tools

91
10.1109/
ares.2016.92

Activity
Bass et al. propose studying the fetching of code from third
party libraries for their vulnerabilities and the security of the
cloud where the image is deployed.

92
10.1109/
ares.2016.92

Design
factor

Farroha et al. advocate the importance of involving software
stakeholders to build a secure system. The rights to protect
sensitive data and ensure compliance need to be granted to
stakeholders to enable security.

Design factor
for
collaboration

93
10.1109/
ares.2016.92

Practice

Rahman et al. reviewed the literature about SecDevOps and
found that most artifacts propose enforcing the collaboration
among the security team, the development team, and the
operations team for a better integration of security principles
into DevOps.

94
10.1109/
ares.2016.92

Activity
In addition, they found that the literature suggests training the
developers to build security tools, which could then be
integrated into SecDevOps processes

95
10.1109/
ares.2016.92

Design
factor

Well-defined policies regarding information exchange across
teams should be in place to prevent security threats due to
collaboration.

Design factor
for policies

96
10.1145/3098954.31
03172

Opportunity
For security, this implies that information on detected attacks
can be fed back to the development, enabling faster
eradication of vulnerabilities in software

97
10.1145/3098954.31
03172

Design
factor

Suitable metrics, for example, would let designers evaluate
alternative designs and determine which is more secure for a
given deployment (cf., Section 4). Designers would also be
able to reason about the minimum capabilities and effort an
attacker needs to violate the security properties.

Design factor
for security
design

ID DOI Code Excerpt Notes

98
10.1145/3098954.31
03172

Principle

Despite the conspicuous advantages of this approach,
measuring the level of security in a given piece of software is
notoriously difficult, and instead it has been argued that the
next-best thing is to measure second-order effects, i.e.,
measure the software security activities that are performed by
the developers as part of the development process.

99
10.1145/3098954.31
03172

Activity
The ability to make quick changes in the code if a vulnerability
is discovered in operations

100
10.1145/3098954.31
03172

Activity
A closely related activity is ensuring that flaws or bugs that are
discovered in operations are fed back to development.

101
10.1145/3098954.31
03172

Activity

In the case of DevOps, a promising approach relies on the
elicitation of security metrics during the Software Development
Life Cycle (SDLC) in order to allow the continuous/agile
evaluation of required vs. achieved security levels.

102
10.1145/3098954.31
03172

Activity
The risk management process ensures that issues are identified
and mitigated early in the development process and followed
by periodic reviews aligned to the agile DevOps vision.

103
10.1145/3098954.31
03172

Activity

A risk-based approach to DevOps for cloud services is a holistic
activity that should be integrated into every aspect of the
developer organization, from planning and system
development life cycle processes to security controls/metrics
allocation.

Cloud
oriented

104
10.1145/3098954.31
03172

Activity Prioritization of defects is challenging.

105
10.1145/3098954.31
03172

Design
factor

Highly critical security defects can be defined as blocking
defects, and as such are easier to deal with - they have to be
fixed as quickly as possible. Level 2 or lower security defects
are more tricky; they have to compete with all other feature
requests and defects, and risk getting pushed back at every
junction. On approach to deal with this might be to set a time
limit for all lower-priority security defects that are discovered.
This will acknowledge that there may be more important issues
for the developers to fix right at the moment but will take into
account that the likelihood of a security defect being exploited
will increase as time goes by, and eventually it will become a
number 1 priority.

Design factor
for
prioritization
of defects

106
10.1145/3098954.31
03172

Activity
It could be argued that software security education of
developers is more important in agile development than in
traditional waterfall.

2120 Master thesis
Lean security

Master thesis
Lean security

ID DOI Code Excerpt Notes

107
10.1145/3098954.31
03172

Design
factor

However, exactly how much is needed is a matter for debate.
We certainly don’t think that it will be possible to teach every
developer to be a software security expert, but we could aspire
to teach every developer enough to enable them to identify
areas where they would benefit from the advice of an expert. It
has been claimed that if we can only make developers think
about security, the number of security defects are reduced by
50%.

Design factor
for security
training

108
10.1145/3098954.31
03172

Practice

Tools are important, and anything that can be automated
should be automated. This is particularly true in DevOps, where
rapid deployments are only possible due to tightly configured
deployment scripts.

109
10.1145/3098954.31
03172

Practice

Communications between Dev and Ops is also vital in any
situation where they are not actually the same persons. It
therefore becomes important to establish who should know
what.

110
10.1145/3098954.31
03172

Framework The Building Security in Maturity Model (BSIMM) states …

111
10.1145/3098954.31
03172

Activity

… the necessity of having a Software Security Group in any
software development organization but based on industry
reports it seems even more important to have security
champions who are part of the development teams. An
external SSG who performs short-term helicopter-style
incursions will inevitably be perceived as an outside agent
hindering progress. Another issue is the size of the
development organization; many of the BSIMM organizations
have hundreds and thousands of developers, and it is not
immediately clear if their experiences are applicable to small
European firms with tens of developers.

112
10.1145/3230833.32
33275

Framework

The Building Security In Maturity Model (BSIMM) is a software
security framework of four domains each broken down into
three practices, where each practice consists of a collection of
concrete and measurable software security activities.

113
10.1145/3230833.32
33275

Activity

It is effectively impossible to say which is “more secure”.
Instead, McGraw and colleagues decided to measure second-
order effects, i.e., identify which software development
activities contribute positively to software security, and measure
to what extent these are performed in a given organization

114
10.1145/3230833.32
33275

Activity

Yasar and Kontostathis propose focusing on security
requirements, threat modeling, environment configuration,
static analysis, code review, penetration testing, environment
testing, and finally a manual security review.

115
10.1145/3230833.32
33275

Activity

SM2.3 Create or grow a satellite. The presence of security-
minded developers across the organization will aid in resolving
quick fixes in case of incidents. The term “satellite” is the one
used in the BSIMM; some organizations have formalized this as
a security champion for some or all development teams.

DevOps
Incident
response
oriented

ID DOI Code Excerpt Notes

116
10.1145/3230833.32
33275

Activity

CP2.1 Identify PII data inventory. Due to GDPR, it will be
paramount to know what kind of Personal Identifiable
Information (PII) is handled by the system under attack, and
where in the system it is stored or handled.

DevOps
Incident
response
oriented

117
10.1145/3230833.32
33275

Activity
T3.5 Establish SSG office hours. In case of an incident, the
handlers will benefit from having an available point of contact
for software security issues.

DevOps
Incident
response
oriented

118
10.1145/3230833.32
33275

Activity

AM2.7 Build an internal forum to discuss attacks. In order to
learn from attacks, they need to be discussed –both to improve
handling and to update software so that the same attack
cannot succeed twice.

DevOps
Incident
response
oriented

119
10.1145/3230833.32
33275

Activity
SR3.1 Control open source risk. If an attack is due to an open
source vulnerability, you need to know which components use
the library in question.

DevOps
Incident
response
oriented

120
10.1145/3230833.32
33275

Activity
SE1.1 Use application input monitoring. Monitoring the input
to your application can help detecting an attack as it happens.

DevOps
Incident
response
oriented

121
10.1145/3230833.32
33275

Activity
SE3.3 Use application behavior monitoring and diagnostics.
Monitoring the behavior of your application can help detecting
an attack as it happens.

DevOps
Incident
response
oriented

122
10.1145/3230833.32
33275

Activity

CMVM1.1 Create or interface with incident response. To have
any hope of being able to make software changes quickly
enough when an attack is manifest, there must be an interface
between developers and incident response.

DevOps
Incident
response
oriented

123
10.1145/3230833.32
33275

Activity

CMVM1.2 Identify software defects found in operations and
feed them back to development. This has the dual effect of
learning from incidents and improving the development
lifecycle.

DevOps
Incident
response
oriented

124
10.1145/3230833.32
33275

Activity

CMVM2.1 Have emergency codebase response. When a
software related attack occurs, it is important to be able to
make quick changes in order to stop the attack and prevent the
same type of attack from occurring again.

DevOps
Incident
response
oriented

125
10.1145/3230833.32
33275

Activity
CMVM2.3 Develop an operations inventory of applications.
This extends SR3.1 by creating a complete overview of which
libraries and/or components are used in which applications.

DevOps
Incident
response
oriented

2322 Master thesis
Lean security

Master thesis
Lean security

ID DOI Code Excerpt Notes

126
10.1145/3230833.32
33275

Activity
CMVM3.3 Simulate software crises. This implies running
preparedness exercises involving both incident responders
and developers.

DevOps
Incident
response
oriented

127
10.1109/
access.2019.2930000 Activity

To that end, we have defined and formalized an activity that
supports ‘Fast and Continuous Feedback from Ops to Dev’ by
providing a flexible monitoring infrastructure so that teams can
configure their monitoring and alerting services according to
their criteria (you build, you run, and now you monitor) to
obtain fast and continuous feedback from the operation and
thus, better anticipate problems when a production
deployment is performed. This activity has been formalized
using the Software & Systems Process Engineering Metamodel
by OMG and its instantiation is described through a case study
that shows the versioned and repeatable configuration of a
cybersecurity monitoring infrastructure (Monitoring as Code)
through virtualization and containerization technology. This
self-service monitoring/alerting allows breaking silos between
dev, ops, and sec teams by opening access to key security
metrics, which enables a sharing culture and continuous
improvement.

128
10.1109/
access.2019.2930000

Design
factor

To that end, we have defined and formalized an activity that
supports ‘Fast and Continuous Feedback from Ops to Dev’ by
providing a flexible monitoring infrastructure so that teams can
configure their monitoring and alerting services according to
their criteria (you build, you run, and now you monitor) to
obtain fast and continuous feedback from the operation and
thus, better anticipate problems when a production
deployment is performed. This activity has been formalized
using the Software & Systems Process Engineering Metamodel
by OMG and its instantiation is described through a case study
that shows the versioned and repeatable configuration of a
cybersecurity monitoring infrastructure (Monitoring as Code)
through virtualization and containerization technology. This
self-service monitoring/alerting allows breaking silos between
dev, ops, and sec teams by opening access to key security
metrics, which enables a sharing culture and continuous
improvement.

Design factor
for self-
service
monitoring
and alerting

129
10.1109/
access.2019.2930000 Activity

Many of these principles and practices can be applied to
security by building security in from the start (shifting security
left), automating security test and monitoring, and making
collaboration between developers and security engineers
effective, aka. DevSecOps.

130
10.1109/
access.2019.2930000 Principle

Many of these principles and practices can be applied to
security by building security in from the start (shifting security
left), automating security test and monitoring, and making
collaboration between developers and security engineers
effective, aka. DevSecOps.

ID DOI Code Excerpt Notes

131
10.1109/
access.2019.2930000 Practice

Many of these principles and practices can be applied to
security by building security in from the start (shifting security
left), automating security test and monitoring, and making
collaboration between developers and security engineers
effective, aka. DevSecOps.

132
10.1109/
access.2019.2930000

Best
practices

In fact, the edition of a new standard on DevOps is expected
for December 2020 (IEEE P2675 DevOps Standard for Building
Reliable and Secure Systems Including Application Build,
Package and Deployment)

133
10.1109/
access.2019.2930000

Design
factor

Security metrics related to the logical security of the
information systems, i.e. cybersecurity, and specifically IoT-
based systems. Example are: Declared Vulnerabilities or CVEs
(Common Vulnerabilities and Exposures) that are the measures
taken from the so-CVSSs (Common Vulnerabilities Scoring
Systems) that indicate levels of vulnerability of the elements
that make up a system (HW and SW). System Availability
measurements that indicate whether the system, from the point
of view of users and external applications, is responding to
their requests—they can provide information for the detection
of denial of service attacks. Finally, intrusion, such as abnormal
behavior of devices, detection of signatures, DNS-based
intrusion detection.

Design factor
for
continuous
security
monitoring

134
10.1109/
access.2019.2930000

Tool
category

Commonly these measures are taken from SIEMs (Security
Information and Event Management) that collect data from
system logs (e.g., antivirus, servers, network appliances,
software components, etc.), analyze and correlate data from
these logs, and detect and report security events.

Tool category
for security
monitoring

135
10.1109/
ms.2017.3571578

Opportunity

Raynaud emphasizes the importance of building security in
from the start, because treating security as a “bolt-on” to the
end of the process is far costlier and can damage the
relationship between security and development teams.

Incident
response
oriented

136
10.1109/
ms.2017.3571578

Activity
Many DevOps principles—such as test automation—can easily
be applied to security, and the adoption of these principles can
help products and businesses succeed securely.

Incident
response
oriented

137
10.1109/
ms.2017.3571578

Activity
DevSecOps puts security at the forefront of requirements to
avoid the costly mistakes that come from treating security as an
after-thought.

Incident
response
oriented

138
10.1109/
ms.2017.3571578

Design
factor

We want security to be included in the nonfunctional
requirements

Incident
response
oriented

2524 Master thesis
Lean security

Master thesis
Lean security

ID DOI Code Excerpt Notes

139
10.1109/
ms.2017.3571578

Design
factor

Successful implementation [of DevSecOps] happens when the
security team provides knowledge and tools and the DevOps
team runs them. There’s no reason for a security team to run
the tooling as a completely out-of-band management process.
Use the tools you have at your disposal already.

Incident
response
oriented

140
10.1109/
ms.2017.3571578

Design
factor

The CI/CD (continuous integration / continuous delivery)
process, for example, is fantastic from a security point of view.

Incident
response
oriented

141
10.1109/
ms.2017.3571578

Activity
The [improved] results you get from penetration testing ... after
security training for developers is really impressive.

Incident
response
oriented

142
10.1109/
ms.2017.3571578

Activity

Start by sitting with each other. I’ve done lots of incident
response and forensics sitting in a glass box, where nobody
can actually see what you’re doing. Why should you hide every-
thing? Working in silos never works.

Incident
response
oriented

143
10.1109/
ms.2017.3571578

Practice

Use the methodology of automation for the benefit of security.
When [incident response teams] realize attacks are coming
against a particular aspect of your website or application,
include that as part of the QA process.

Incident
response
oriented

144
10.1109/
ms.2017.3571578

Activity

Use the methodology of automation for the benefit of security.
When [incident response teams] realize attacks are coming
against a particular aspect of your website or application,
include that as part of the QA process.

Incident
response
oriented

145
10.1109/
ms.2017.3571578

Activity
Give the attack pattern to your developers, so that they can
actually change the application accordingly.

Incident
response
oriented

146
10.1109/
ms.2017.3571578

Activity

Having a “security champion” is one way to do it. This is where
the security team teaches one of the developers about security,
and then [that person] disseminates the information to the rest
of the team. It’s really about knowledge sharing.

Incident
response
oriented

147
10.1109/
ms.2017.3571578

Design
factor

I used to work in a company that was doing high-frequency
trading. They had gamified finding bugs. Two years in, we had
five known issues that we wanted the developers to discover.
One of the guys came back with 10 of them. At this point we
said, “Wow, they got it.”

Incident
response
oriented

148
10.1109/
ms.2017.3571578

Principle

[Shifting security left] is when you start from the nonfunctional
requirements. For example, in a financial company you explain
[at the start], “We have to think about PCI requirements.” That’s
the essence of it: start from the beginning with all the different
teams.

Incident
response
oriented

ID DOI Code Excerpt Notes

149
10.1109/
ms.2017.3571578

Challenge
Initially there will be a learning curve, where suddenly this
security person is asking lots of questions.

Incident
response
oriented

150
10.1109/
ms.2017.3571578

Opportunity

But if you think about the costs of implementing security later
on, that’s completely different. [Think about] fixing a bug in
production. That’ll cost you a fortune. You’ll have to stop
production, redo QA, [rebuild] all your artifacts, do all the
version control again, and [update] all your documentation. If
you do it at the beginning, once everything is being built, you
can reduce these costs. By shifting security left, by discovering
issues and bugs at an earlier stage, you can easily in-corporate
it as part of your QA process. The lag you’ll experience will go
down, and the cost of fixing security will be much lower.

Incident
response
oriented

151
10.1109/
ms.2017.3571578

Activity DevSecOps emphasizes threat modeling, which is quite fun.
Incident
response
oriented

152
10.1109/
ms.2017.3571578

Activity

incorporate those (security) tests as part of QA. It’s easy. Your
OWASP Top 10: incorporate those as part of your QA process.
Give developers the ability to test for [those issues]
themselves.

Incident
response
oriented

153
10.1016/
j.jss.2018.06.073

Design
factor

Studies have shown (e.g. Yuan et al., 2015; Wang et al., 2017;
Williams, 2015) that including knowledge base (e.g.
taxonomies, catalogs of misuse and abuse cases, attack
scenarios and trees, etc.) helps the analyst to identify and
analyze threats. Therefore, we were interested to record which
existing techniques provide a knowledge base.

Design factor
for threat
modeling

154
10.1016/
j.jss.2018.06.073

Tool
category

We have assessed the techniques as knowledge based if the
they are supported by some external source of information
which helps raise the quality of outcomes. For instance, some
techniques provide a catalog of example threats (e.g. STRIDE
Shostack, 2014; Torr, 2005), templates (e.g. misuse cases) or
even use one of the existing databases (such as CAPEC4,
CWE5, CVE6) to compute threat suggestions.

Tool for
threat
modeling

155
10.1016/
j.jss.2018.06.073

Design
factor

Misuse cases (MUC) are derived from use cases in
requirements engineering. In the form of templates, they are
used to capture textual descriptions of threat paths, alternative
paths, mitigations, triggers, preconditions, assumptions,
attacker profiles, etc.

Design factor
for threat
modeling

156
10.1016/
j.jss.2018.06.073

Design
factor

The literature also mentions abuse cases, MUC maps and MUC
scenarios. The difference between misuse and abuse cases is
subtle and the two terms are sometimes used interchangeably.
Strictly speaking, abuse is misuse with malicious intent. MUC
maps and scenarios both focus on representing chained
attacks, from start to the end of vulnerability exploitation.

Design factor
for threat
modeling

2726 Master thesis
Lean security

Master thesis
Lean security

ID DOI Code Excerpt Notes

157
10.1016/
j.jss.2018.06.073

Design
factor

Another way of identifying alternative paths of attack is by
using attack (or threat) trees, where the root node is refined
into leaves re-presenting all possible attacker actions.
Therefore an attack path is a single path starting at leaf node
leading to the root node. Attack trees are commonly adopted
in a combination with other techniques.

Design factor
for threat
modeling

158
10.1016/
j.jss.2018.06.073

Tool
category

For instance, LINDDUN Deng et al. (2011) proposes a
combined analysis by first mapping the threats to (DFD)
elements, using threat tree patterns and usage scenarios in
order to identify MUC scenarios.

Tool for
threat
analysis
(types of
input)

159
10.1016/
j.jss.2018.06.073

Design
factor

Much like threat patterns, problem frames are used to describe
problems in software engineering. They define an intuitively
identifiable problem class in terms of its context and the
characteristics of its domains, interfaces and requirements
(Jackson, 2001). As such problem frames are rather general in
scope, therefore conceptualized security problem frames were
soon introduced (Hatebur and Heisel, 2005;Beckers et al.,
2013b; Lin et al., 2004).

Design factor
for threat
modeling

160
10.1016/
j.jss.2018.06.073

Design
factor

Goal-oriented requirements engineering (GORE) perceives
systems as a set of agents communicating in order to achieve
goals. In GORE goals (or anti-goals) are refined until finally
requirements (or anti requirements) are achieved.

Design factor
for threat
modeling
(types of
input)

161
10.1016/
j.jss.2018.06.073

Design
factor

Finally, several software-centric techniques are well recognized
in the software engineering community, particularly in the
industrial space, such as STRIDE (Shostack, 2014; Torr, 2005),
CORAS (Lund et al., 2011), P.A.S.T.A (UcedaVelez and Morana,
2015), DREAD (Owasp, 2017), Trike (Saitta et al., 2005), to name
a few.

Design factor
for threat
modeling
(types of
input)

162
10.1016/
j.jss.2018.06.073

Tool
category

Finally, several software-centric techniques are well recognized
in the software engineering community, particularly in the
industrial space, such as STRIDE (Shostack, 2014; Torr, 2005),
CORAS (Lund et al., 2011), P.A.S.T.A (UcedaVelez and Morana,
2015), DREAD (Owasp, 2017), Trike (Saitta et al., 2005), to name
a few.

Design factor
for threat
modeling
(types of
input)

163
10.1016/
j.jss.2018.06.073

Design
factor

Risk-centric threat analysis techniques focus on assets and their
value to the organization. They aim at assessing the risk and
finding the appropriate mitigations in order to minimize the
residual risk. Their main objective is to estimate the financial
loss for the organization in case of threat occurrence (e.g.
CORAS Lund et al., 2011). Therefore, when risk-centric
techniques are used assets dictate the priority of elicited
security requirements.

Design factor
for threat
modeling

ID DOI Code Excerpt Notes

164
10.1016/
j.jss.2018.06.073

Design
factor

On the other hand, attack-centric threat analysis techniques
focus the analysis around the hostility of the environment. They
put emphasis on identifying attacker profiles and attack
complexity for exploiting any system vulnerability (e.g. Attack
trees Mauw and Oostdijk, 2005). Their main objective is to
achieve high threat coverage and identify appropriate threat
mitigations.

Design factor
for threat
modeling

165
10.1016/
j.jss.2018.06.073

Design
factor

Finally, the literature also mentions so-called software-centric
threat analysis techniques. This group includes techniques that
focus the analysis around the software under analysis. For
example, in STRIDE Shostack (2014); Torr (2005) the analysis is
performed on DFDs, which provide a high-level architectural
view of the software.

Design factor
for threat
modeling

166
10.1016/
j.jss.2018.06.073

Tool
category

For instance, Almorsy et al. (2013); Berger et al. (2016); Chen et
al. (2007) and Tøndel et al. (2010) present formalized rules to
extract knowledge from public repositories of threats and
vulnerabilities namely Common Weakness Enumeration (CWE)
(Martin, 2007) , Common Attack Pattern Enumeration and
Classification (CAPEC) (Barnum, 2008), Open Web Application
Security Project (OWASP) (Category: attack - owasp,
2017;Category:vulnerability - owasp, 2017).

Tool for
threat
modeling

167
10.1016/
j.jss.2018.06.073

Design
factor

In our opinion, there are three areas where existing techniques
could be improved in order to cater to the needs of DevOps.
First, it is important that the information that was gained from
threat analysis is automatically propagated to source code level
(and vice-versa). It might be beneficial to assure the traceability
between the threats and corresponding security requirements
at the level of implementation. This might facilitate a more
efficient reuse of analysis outcomes in the fast-changing code
base. Establishing a traceable link between architectural design
and implementation can be achieved with a “top-down” or
“bottom-up” approach.

Design factor
for threat
modeling

168
10.1016/
j.jss.2018.06.073

Activity

In a “top-down” approach, the architectural design decisions
need to be annotated in the source code (e.g. as presented by
Abi-Antoun and Barnes, 2010). Such annotations may have to
be added manually by developers themselves, which could
render the technique unreliable. Therefore, there are existing
approaches to extract the architecture from the code base (i.e.
Software Architecture Reconstruction (SAR)) by employing
dynamic and/or static reverse engineering techniques (e.g. as
presented by Granchelli et al., 2017). To the best of our
knowledge, the existing tools supporting SAR have limitations
and are not commonly applied to practice. From a usability
perspective, practices such as continuous deployment cause
uncertainty in the security implications of modified code base.
For instance, it would be beneficial for developers to get
instant feedback on how their contribution impacts the security
of the code base (e.g. one threat is mitigated).

2928 Master thesis
Lean security

Master thesis
Lean security

ID DOI Code Excerpt Notes

169
10.1016/
j.jss.2018.06.073

Design
factor

Second, the existing techniques would benefit from guidelines
of how to compose the analysis outcomes. In practice, the
software systems under analysis are too large and complex to
be analyzed at once. Therefore, organizations are forced to
scope the system into sub-systems and assign the analysis to
several teams of experts to be analyzed simultaneously. As a
result, border elements are either analyzed multiple times, or
overlooked. One possible solution could be to scope the
system according to assets. In this case, elements handling
certain assets would be analyzed together in an end-to-end
manner. To facilitate the composability of analysis outcomes, a
level of formalism could beneficial. For example, taint analysis
has been used to analyze applications in order to present
potentially malicious dataflows to the human analyst. The
analyst (or automated malware detection tool) is able to decide
whether particular flows constitute a policy violation.

Design factor
for threat
mdoeling

170
10.1016/
j.jss.2018.06.073

Design
factor

Third, the analysis performed for one subsystem is related to
security assumptions, which may not be in line with the security
assumptions of another subsystem. Further, threats with high
impacts to the organization are typically prioritized. Threat
prioritization is commonly still performed manually, which
demands a lot of resources. Therefore, existing analysis
techniques need to invest in impact analysis automation.

Design factor
for threat
analysis

171
10.1016/
j.jss.2018.06.073

Design
factor

To conclude, in light of DevOps and Agile, where software
development is driven by change, there are three important
aspect where existing analysis techniques have yet to mature:
(i) traceability of analysis in the code base, (ii) composability of
analysis outcomes and (iii) threat impact analysis automation.

Design factor
for threat
analysis

172
10.1049/iet-
sen.2018.5293

Activity

With the aim to address (multi)Cloud risk challenges, we adopt
the SLA-based approach where we rely on the existence of a
Security SLA (and PLA) associated to each application
component that is not under control of the designer and is
offered as a service (i.e. is a Cloud service consumed by the
application).

173
10.1049/iet-
sen.2018.5293

Framework
The risk assessment process in MUSA is considered the key
driver to Cloud services selection decision support.

174
10.1049/iet-
sen.2018.5293

Design
factor

The risk assessment process in MUSA is considered the key
driver to Cloud services selection decision support. Depending
on whether the multiCloud application processes PII, risks may
involve not only security concerns but also risks to data privacy.
MUSA promotes that risk evaluation is a continuous task where
multiple perspectives of organization roles should take part.

175
10.1049/iet-
sen.2018.5293

Activity risk model based on the OWASP threat risk modelling

ID DOI Code Excerpt Notes

176
10.1049/iet-
sen.2018.5293

Tool
category

These threats may be chosen from a threat catalogue such as
that included in the MUSA Security Metrics Catalogue, which
describes potential threats to different service types taken from
expert sources such as the OWASP TOP 10 threats catalogue.

177
10.1049/iet-
sen.2018.5293

Tool
category

The security threats selected are classified in the STRIDE
categories (Spoofing identity, Tampering, Repudiation,
Information disclosure, Denial of service and Elevation of
privilege).

178
10.1049/iet-
sen.2018.5293

Design
factor

The DevOps team is required to provide the likelihood and
impact of each threat and the composite risk index (CRI) of
each threat …

Design factor
for threat
modeling

179
10.1049/iet-
sen.2018.5293

Tool
category

In our approach, we have leveraged the ROAM model risk
mitigation classification. ROAM is a common agile
management risk mitigation classification that, according to the
countermeasures applied, classifies each threat as: (i) Resolved,
in case the risk has been answered, avoided or eliminated; (ii)
Owned, for risks that have been allocated to someone who has
responsibility for addressing them; (iii) Accepted, if the risk has
been accepted and no further actions are required to address
it; (iv) Mitigated, if an action has been taken (i.e. controls are
set) to mitigate the risk, either reducing its likelihood or
reducing its impact.

180
10.1049/iet-
sen.2018.5293

Activity

Cloud service selection on the basis of offered controls. Once
the risk profile is finished, a Cloud service match-making
process starts to select the services that best match the controls
and the requirements in the CPIM model.

181
10.1049/iet-
sen.2018.5293

Activity Creation of security SLA for multiCloud

182
10.1049/iet-
sen.2018.5293

Activity

Continuous monitoring of composed SLA fulfilment. The
security and privacy levels promised to multiCloud application
customers are continuously under scrutiny by DevOps team
who keep tracking whether the metrics defined for the controls
are reaching the target levels (SLOs).

183
10.1109/
smartcloud.2017.21

Design
factor

These mechanisms are employed to identify and resolve
vulnerabilities in computer systems and applications e.g. the
number of vulnerabilities in applications could be reduced by
integrating security assessments techniques in Continuous
Development (CD) pipelines

Design factor
for security
automation

184
10.1109/
smartcloud.2017.21

Design
factor

SecaaS follows after the Software as-a-Service (SaaS) model by
leveraging the cloud to provide security services. Hence, the
services are self-managed, automated and scalable.

Design factor
for security
automation

185
10.1109/
smartcloud.2017.21

Activity
A possible approach consists in training DevOps on security
roles. But this approach is not optimal and may be limited
given the requirement for security expertise.

3130 Master thesis
Lean security

Master thesis
Lean security

ID DOI Code Excerpt Notes

186
10.1109/
smartcloud.2017.21

Design
factor

SecaaS could be integrated into CD pipelines to resolve the
aforementioned concerns (see Figure 1). API calls against
SecaaS could automate security tasks, including security
analysis and reports generation.

Design factor
for security
automation

187
10.1109/
smartcloud.2017.21

Activity
For example, security scanners can be used to scan target VMs
for check for vulnerabilities prior to application deployment

188
10.1109/
ares.2016.92

Design
factor

automated monitoring, automated deployment pipeline, and
automated testing contribute positively to the security of the
software

DevOps
generic

189
10.1109/
ACCESS.2017.26856
29

Activity

Having proposed a secure build server, they encapsulated
build jobs using virtualization environment with snapshot
capability to prevent one project’s security attacks from
infecting other projects’ build jobs in multitenant CI systems.

DevOps
generic

190
10.1109/
ACCESS.2017.26856
29

Activity

which integrates security design fragments (i.e., security
patterns) through four compassion primitives namely connect
tactic, disconnect tactic, create tactic, and delete tactic to
secure deployment pipelines

DevOps
generic

191
10.1145/3098954.31
03170

Activity Institute security awareness program

192
10.1145/3098954.31
03170

Activity Monitor security practices

193
10.1145/3098954.31
03170

Activity Perform security analysis of requirements

194
10.1145/3098954.31
03170

Activity Specifiy resource-based security properties

195
10.1145/3098954.31
03170

Activity Requirements inspection

196
10.1145/3098954.31
03170

Activity Risk estimation

197
10.1145/3098954.31
03170

Activity Threat modeling

198
10.1145/3098954.31
03170

Design
factor

Detail misuse cases

199
10.1145/3098954.31
03170

Activity Perform security analysis of system design

200
10.1145/3098954.31
03170

Activity Coding standards

201
10.1145/3098954.31
03170

Activity Pair programming

ID DOI Code Excerpt Notes

202
10.1145/3098954.31
03170

Activity Integrate security analysis into build processes

203
10.1145/3098954.31
03170

Activity Perform software security function usability testing

204
10.1145/3098954.31
03170

Activity Perform SW security fault injection testing

205
10.1145/3098954.31
03170

Activity Perform source level security reviews

206
10.1145/3098954.31
03170

Activity Perform code signing

207
10.1145/3098954.31
03170

Activity Repository improvement

3332 Master thesis
Lean security

Master thesis
Lean security

Appendix C: thematic analysis details
Thematic analysis on security activities

Activity Excerpt IDs

Performing continuous feedback from production to development 99,100,104,117,122,123,144

Provide security training 94,106,185

Establish security satellites 111,115,146

Practice incident response 74,126,142

Performing automated security testing 6,14,70,75,76,77,82,85,89,129,136

Performing automated run-time testing 10,12,78

Performing automated static testing 37,85,89,114

Integrate security tests in unit testing 41

Performing automated software composition analysis 6,47,91,119,125

Implement automated remediation 25,33

Implement automation of software licensing 40

Performing security configuration automation 39,73,76,114

Performing security requirements analysis 23,46,51,91,114,116,137,180

Performing threat modeling 54,69,114,151,175

Performing risk analysis 7,23,53,68,102,103

Establishing security SLA's for cloud providers 23,28,30,172,181

Performing continuous monitoring 77,85,129

Performing continuous monitoring of security SLA's 32,34,182

Performing continuous monitoring of security metrics throughout the
SDLC using CI/CD tooling

62,63,101

Performing continuous monitoring of system metrics using
automated tools

38

Performing continuous monitoring of security controls 71

Performing continuous monitoring of application behaviour 120,121

Provide self-service monitoring capabilities to dev and ops 127

Performing continuous assurance 48

Thematic analysis on design factors

Activity Excerpt IDs

Performing manual security testing

Performing manual penetration testing 12,52,114,141

Performing manual security review 89,114

Performing automated security testing of the CI/CD pipeline 189,190

Activity Design factor Except IDs

Performing automated
Security Testing

Leverage SecaaS by using cloud provided
self-managed, automated and scalable
security services

184, 186

Performing automated
Security Testing

Integrate the security tools in an automated
deployment pipeline

140, 183, 188

Performing automated
Security Testing

Automate as many security controls and
verifications as possible

60, 61

Perform automated run-
time testing

Perform automated run-time testing at four
levels: (1) pre-authentication scanning, (2)
post-authentication scanning, (3) independent
backend scanning and (4) complete
workflows

79

Perform automated run-
time testing

Ensure automated run-time testing is
implemented for a broad scope of test
scenarios

18

Perform automated run-
time testing

Ensure proper unit tests are in place to
optimise run-time testing efficiency

20

Performing automated
static testing

Minimise the number of false positives
resulting from static testing

16

Performing security
requirements analysis

Treat security requirements as nonfunctional
requirements

138

Performing security
requirements analysis

Leverage metrics gathered during the security
requirements analysis phase to evaluate the
security level of alternative designs

97

Performing security
requirements analysis

Enable the evaluation of alternative designs
through suitable metrics during security
requirements analysis to determine variations
in security levels of a given design and make
appropriate choices

97

3534 Master thesis
Lean security

Master thesis
Lean security

Activity Design factor Except IDs

Performing security
requirements analysis

Leverage goal-oriented requirements analysis
(GORE) to perform security requirements
analysis

160

Performing threat
modeling

Perform threat modelling from a risk-centric
perspective

163

Performing threat
modeling

Perform threat modelling from a attack-centric
perspective

164

Performing threat
modeling

Perform threat modelling from a software-
centric perspective

161, 165

Performing threat
modeling

Ensure compatibility of threat modelling
outcomes from a scope and result perspective

169, 171, 178

Performing threat
modeling

Introduce abuse cases and problem frames to
perform threat modeling

153, 156, 159

Performing threat
modeling

Make use of attack or threat trees to perform
threat modelling

153, 157

Performing threat
modeling

Implement traceability of threat modelling
(results) in the code base

167, 171

Performing threat
modeling

Automate threat impact analysis 170, 171

Performing risk analysis
Performing risk analysis continuously before
each iteration

26

Performing risk analysis
Performing risk analysis during the design
phase

174

Performing continuous
monitoring

Ensure continuous monitoring covers a wide
range of resources and metrics including
logical security, availability and intrusions

72, 133

Performing continuous
monitoring

Leverage monitoring as code to establish a
versioned and repeatable deployment of
monitoring infrastructure

128

Performing manual
security testing

Limit manual penetration testing to critical
components or perform in parallel to reduce
impact on deployment lead times

13

Performing continuous
feedback from
production to
development

Set a time limit for all lower-priority security
defects

105

Performing continuous
feedback from
production to
development

Give attack patterns to your developers 145

Activity Design factor Except IDs

Performing continuous
feedback from
production to
development

Build an internal forum to discuss attacks 118

Performing continuous
feedback from
production to
development

Establish emergency code base response 124

Performing continuous
feedback from
production to
development

Incorporate security tests as part of QA for
detected incidents

152

Providing security
training

Teach every developer enough to enable
them to identify areas where they would
benefit from the advice of an expert

107

Performing threat
modeling

Perform threat modelling from a software-
centric perspective

161, 165

Performing threat
modeling

Ensure compatibility of threat modelling
outcomes from a scope and result perspective

169, 171, 178

Performing threat
modeling

Introduce abuse cases and problem frames to
perform threat modeling

153, 156, 159

Performing threat
modeling

Make use of attack or threat trees to perform
threat modelling

153, 157

Performing threat
modeling

Implement traceability of threat modelling
(results) in the code base

167, 171

Performing threat
modeling

Automate threat impact analysis 170, 171

Performing risk analysis
Performing risk analysis continuously before
each iteration

26

Performing risk analysis
Performing risk analysis during the design
phase

174

3736 Master thesis
Lean security

Master thesis
Lean security

Activity Design factor Except IDs

Performing continuous
monitoring

Ensure continuous monitoring covers a wide
range of resources and metrics including
logical security, availability and intrusions

72, 133

Performing continuous
monitoring

Leverage monitoring as code to establish a
versioned and repeatable deployment of
monitoring infrastructure

128

Performing manual
security testing

Limit manual penetration testing to critical
components or perform in parallel to reduce
impact on deployment lead times

13

Performing continuous
feedback from
production to
development

Set a time limit for all lower-priority security
defects

105

Performing continuous
feedback from
production to
development

Give attack patterns to your developers 145

Performing continuous
feedback from
production to
development

Build an internal forum to discuss attacks 118

Performing continuous
feedback from
production to
development

Establish emergency code base response 124

Performing continuous
feedback from
production to
development

Incorporate security tests as part of QA for
detected incidents

152

Providing security
training

Teach every developer enough to enable
them to identify areas where they would
benefit from the advice of an expert

107

Appendix D: Expert interviews
Interview 1: Cyber Security Designer

Organisation: Belgium-based financial services company that specialises in the settlement of
securities transactions as well as the safekeeping and asset servicing of these securities. >1000 staff
members.

Role: Cyber Security Designer. Aligns security practices to agile methodology, including DevOps.

Experience: More than 10 years of experience in Security and Architecture.

The interviewee mentions that his organisation is a highly regulated organisation requiring
compliance with a wide variety of different norms and standards: CSTR (Cloud Security Thread
Report), SWIFT standards, GDPR, French Military Law, etc. Requirements defined by these norms are
collected in a compliance rule database, where they are combined with specific risk controls.

The organisation is at the beginning of its DevOps journey, today application development does not
utilise Continuous Integration (CI) practices and is starting to apply agile methodologies throughout
its activities. There is pressure to speed up current software delivery process to become faster and
more responsive. At this point there are no clear practices related to Dev(Sec)Ops defined within the
organisation, from a security perspective all projects are treated in a similar fashion. The interviewee
also warns that whichever practices and activities are selected and implemented the challenge of
proving regulatory compliance remains due to the complexity of mapping outcomes of security
activities to these requirements.

The interviewee mainly considers DevSecOps from the point of view of automation, the path forward
for the organisation is to incorporate automated security activities (static analysis, penetration testing,
etc.) in the existing development activities allowing faster and more efficient feedback loops. Some
of the activities which are considered valuable in the context of the organisation are:

• Automation of code review: The interviewee believes this is fairly easy to do however humans will
still be required for more in depth tasks

• Automation of testing: The interviewee mentions that automated boundary testing would be
beneficial to security

• Gathering and tracking of compliance requirements

• Definition of security policies and acceptance criteria

• Design review and threat modelling

Today the organisation already invests in the software security education of developers by providing
secure coding standards & guidelines and by providing secure coding training materials. However

3938 Master thesis
Lean security

Master thesis
Lean security

due to the fact that development activities are performed by external parties they have little control
during the development cycle itself.

While discussing the diagram the interviewee pointed out that the ideation phase during which many
of the security architecture activities are performed can be considered outside of the infinite loop
used to represent the Dev(Sec)Ops process. It is in this step that activities such as compliance
requirements and risk assessments are performed. He also stresses that common knowledge dictates
that about half of the application security issues are related to errors and mistakes during the
development phases and the other half is due to design and architecture.

The interviewee also mentioned that the organisation has no current plans to integrate the
operations team and activities in this approach as this is perceived as being too high risk and outside
of the comfort zone of the organisation. As this may be the case in the future, he also points out that
the separation between development and operations teams used to be a security control within
organisations and that a tight integration may also introduce new security challenges. The
interviewee assumes that a DevSecOps approach will not have impact on the high-level (Security)
Architecture activities being performed today.

When asked the interviewee confirms that for the organisation and the industry at large security is
perceived as an obstacle for successful DevOps implementations. The interviewee also points out
that security was not really part of the Agile movement and that it is only now

Today the organisations’ security architecture team focusses its efforts on adapting the existing
security-related processes to the Agile way of working. The traditional approach within the
organisation was to prepare a detailed security architecture document at the beginning of each
project. This document was then circulated between the different stakeholders for review and
approval. In each Agile iteration, this document needed to be refined and reviewed, which resulted
in a cumbersome process, requiring a lot of effort and resulting in time delays.

The security architecture team changed its methodology to a model-based architecture following the
principle of “documenting as far as you can see” and refine through iterations. Security architecture
is now generated from models, which reduces documentation overhead. They use the ArchiMate
modelling language (Archi as a tool) to define the models.

Another challenge for the organisations transition to Agile methodologies are contracts with external
suppliers. The contracts are defined based on the fixed scope for 5 years, which is difficult to
determine because in Agile the scope is supposed to be flexible.

The interviewee recognises that a Dev(Sec)Ops culture could further help optimising the use of
available resources. For instance, expensive external pen testers today are mainly occupied with the
detection of trivial coding errors (e.g., checking input boundaries). He expects that by applying
(automated) security practices throughout the development cycle these “low-hanging fruits” can be
covered earlier on in the process allowing security experts to dedicate their efforts to detecting
complex security issues or dependent to the business process dependent weaknesses.

The interviewee also mentions that the most important challenge faced by the organisation today is
the organisational culture concerning security. There is a constant struggle between business
stakeholders and security architecture, even within highly regulated organisations. The business
stakeholders consistently prioritise features over security in part due to the way performance is
measured and rewarded. This is reinforced by Agile methodologies which enable the business
stakeholders to do exactly that. As such this conflict is not new to Agile but is rather being reinforced
by it. He warns however in the long term this leads to the accrual of technical dept. A lack of structure
can lead to functionality (new or changed) cannot longer be implemented because of the excessive
complexity. One potential way to tackle this problem according to the interviewee would be to
establish rules so that a certain percentage of effort in each sprint should be dedicated to paying off
technical dept.

Interview 2: Cyber Security Designer

Organisation: Large governmental institution.

Role: Cyber Security Assurance Analyst. Assist in the definition of software security assurance and
DevSecOps practices institution.

Experience: More than 19 years of experience in Information Security ranging from technical to
governance aspects.

At the start of the interview, when asked about his take-aways related to DevSecOps, the interviewee
mentions that DevSecOps is an incredibly broad field. Therefore he states that DevSecOps should is
mainly characterised by the concept of automation. Activities such as developing applications or
performing manual penetration testing are best compared to forms of art and therefore require
considerable time and effort making them slow. DevSecOps does not aim to replace activities such
as manual penetration testing but rather seeks to implement additional supporting measures which
can be automated reducing the time required to test something. They should be seen as
complementary to manual activities and, by performing the low level work, these automated activities
may reduce the time required for the manual activities.

The real challenge in DevSecOps according to Frederic is that in general automated security testing
such as performed by Dynamic Application Security Testing tools delivers very poor results. This type
of technology does not play very well with newer technological evolutions such as Single Page
Applications, new approaches to authentication and so on. A potential way forward would be the use
of Interactive Application Security Testing (IAST) solutions however the interviewee points out that
these rely on the coverage of the functional tests performed by the testing team. Testing through
IAST may therefore prove incomplete as testing teams rarely cover the full breadth of functionality in
an application. This leads the interviewee to the conclusion that one of the most important aspects of
web application security is very difficult to cover through automation. The interviewee points out that
for high value applications or components manual verification activities makes perfect sense

4140 Master thesis
Lean security

Master thesis
Lean security

however he does not see why one would not apply the automated tests as a security baseline across
all applications.

According to the interviewee it is a true challenge in larger organisations to embrace true
DevSecOps practices. Concepts such as infrastructure-as-code, continuous deployments and close
collaboration between teams are difficult to implement throughout large organisations. He mentions
that many organisations claim to do DevSecOps while in reality few manage to get it right at this point
in time.

When looking at the process part of things he states that in his current organisation the
implementation of DevSecOps is being pushed bottom-up with the various teams looking to
interface with each-other on the technical side of things. This leads to teams integrating aspects of
their work on an ad-hoc basis which does not allow a true integration as would be possible when
driven top-down. This situation can be explained by the traditional segregation between
development and security / penetration testing teams in the organisation, they used to live each in
their own worlds. Frederic points out that the only way forward would be to embed the security
experts in the development teams.

Currently he tries to push for a ratio of 1 application security specialist for every 100 developers which
he considers a minimalistic starting point. The organisation currently designates so called security
experts (security champions) within some development teams who are considered responsible for
security in their team. However these people can not be considered as true application security
experts due to the significant knowledge gap. A transversal team of security experts supporting the
security leaders across the various development teams would make sense from his perspective. The
current approach of the organisation is to leverage SecureCodeWarrior (security training solution)
combined with internal tournaments to create a sense of community. An important aspect to promote
security practices are relational mechanisms such as meet-ups, leaderboards and tournaments.

When talking about threat modelling the interviewee points out that development teams are asking
for visual tools allowing them to input data-flows and receive relevant threats and security
requirements. These types of tools can gain in effectiveness when combined with security testing
based on the identified security requirements. Overall the importance of security architecture should
not be underestimated.

Looking at the tooling landscape in the organisation they currently implemented a secure coding
training platform based on Secure Code Warrior while leveraging Fortify SAST and DAST tools for
automated scanning. Software Composition Analysis is performed using OWASP dependency check
and container security scanning is performed using tenable.io. The results from these tools are
reported in the Fortify Software Security Center which provides vulnerability correlation and allows a
link to the training platform to allow developers to obtain additional knowledge related to the
findings. The findings from the vulnerability correlation platform can be exported to Jira for easy
accessibility.

Overall the interviewee believes that in general developers welcome the availability of security
knowledge and tools. The best approach is to provide access to security knowledge and tooling for

the development community while cultivating an application security mindset. Involving
management by increasing their understanding and ensuring they give quality a place in the
organisation is an important success factor to establish such a mindset. The interviewee wants to
make an attempt at creating this management awareness by exposing management to security
challenges in pseudo code during the next secure coding competition. Another enabler for this
mindset could be the publication of team leaderboards.

Interview 3: DevSecOps advisor

Organisation: Various customers including large financial institutions.

Role: DevSecOps advisor.

Experience: Five years of experience with information security and specialised in DevSecOps

The interviewee states that many organisation are facing challenges when implementing security in
the software development cycle. They don’t know how to approach this in a scalable way, an example
of this is that traditional manual penetration testing does not really fit well with DevOps. Another
aspect are the difficulties related to infusing existing DevOps teams with security knowledge.

This leads us to one of the obstacles for DevSecOps which, according to the interviewee, is
awareness about security topics combined with the required level of knowledge to get it right.
According to him the people aspect in DevSecOps should therefore be the main focus of any
successful approach. In practice he sees very often that a bottom-up approach is used to influence
culture, for example tools or processes are leveraged to generate quick wins. However the ultimate
goal should be establish a security mindset in the organisation.

The lack of people with security knowledge is an important driver for automation of security activities.
It is crucial to leverage automation to reduce the skill gap. The key to effective automation is to start
from the process and build from there. The tools should be there to facilitate and automate the
process instead of processes being built around tools which does not work very well.

Coming back to culture and mindset it is important to emphasise that the developers understand the
why. Without this mind-shift there will be friction with the development and operations teams leading
them to fight against the security tools. A way to achieve this is to ensure stakeholders receive
relevant output from the automated processes so they can understand why something happens and
to provide them relevant knowledge on the topic of security. This communication is a key enabler for
adoption of DevSecOps processes.

Every organisation should have secure coding standards however when trying to create a security
mindset it is also useful to convey impact by relating to real-world incidents and cases. Try to place as
many things as possible in context for the participants.

When asked about threat modeling the interviewee sighs and mentions that it is a difficult subject in
DevSecOps, it is hard to get it right. You need knowledgeable people to do the threat modeling and

4342 Master thesis
Lean security

Master thesis
Lean security

you need attention and time from the team(s) to make it valuable. Theoretically the approach to start
from threat modeling makes sense however in practice it is not easy to implement. Threat modeling
automation could be a way of facilitating this. The technique is promising if it becomes feasible to do
with limited time available. Overall he sees issues in the scalability aspects of threat modelling.

The same issue applies to security requirements analysis, how to scale this? In many cases security
requirements are poorly documented and if document rarely consulted by the people doing the
actual implementation. The key is to find an approach to consume security requirements for a
DevSecOps team. A combination of automated validation and stop on fail can push teams to
implement the required security measures to successfully complete the build. For example open
policy agent can be leveraged to automate decision making in automated tests leading to
compliance as code. Solutions such as Open Policy Agent make sense because they operate on a
sufficiently abstract level allowing them to cover a wide range of technologies.

When asked about important DevSecOps enablers the interviewee mentions that SAST and SCA are
cornerstones of security automation. DAST however is very difficult to automate leading to limited
automation capabilities. It is an essential component but as it stand it’s not sufficiently mature to be
integrated in a DevSecOps pipeline. DAST relies on a complete coverage of the applications
functionality through tests, without proper functional testing there is no good way to leverage DAST.
AIAST may be more a marketing approach to distinguish themselves from other DAST solutions.

Another aspect which deserves attention are deployment aspects such as cloud security,
infrastructure as code and secret management are an integral part of DevSecOps. Container security
is an important aspect which is regularly neglected. The increasing complexity of the overall stack
increases risks from a security perspective.

Getting and maintaining an overview of cloud resources is a huge challenge. A lot of security
knowledge is required to understand which controls you need, how they need to be configured and
maintaining a view on their effectiveness. There is knowledge available on cloud controls however it
remains a manual and research heavy process. There are quite some open-source and commercial
tools available however they usually cover only part of the solution resulting in a mesh of many
different tools and solutions. The networking aspect of multi-hybrid clouds is very complex and
pushed towards teams who were previously not concerned with these aspects.

With all these tools in place maintaining oversight can be quite challenging. Correlating the wide
range of metrics gathered throughout the CI/CD pipeline is another current aspect. There is hope
that machine learning can play an important role here. Therefore solutions such as vulnerability
correlation engines are best created as bespoke solutions tailored to the organisation using them.

Bringing the various pieces of DevSecOps together is the most challenging of all. DevSecOps can
only be feasible by bringing together experts in the different domains and providing this knowledge
to a wide range of actors (development and operations). Training the people involved in the
DevSecOps process is key. Overall the interviewee considers security to be a quality attribute,
without quality security is not achievable.

Appendix E: knowledge nomination
worksheet

ID Name Category Experience Iteration
Survey Interview GSS

I P I P I P

1 ------- Practitioner
+10 years experience
MsC

1 Y Y Y Y Y N

2 ------- Practitioner
+10 years experience
MsC

1 Y N Y N N N

3 ------- Practitioner
+10 years experience
MsC

1 Y Y Y Y Y Y

4 ------- Academic
Author of gold set
paper

2 Y N Y N N N

5 ------- Academic
Author of gold set
paper

2 Y N Y N N N

6 ------- Academic
Author of gold set
paper

2 Y N Y N N N

7 ------- Academic
Author of gold set
paper

2 Y N Y N N N

8 ------- Practitioner
+10 years experience
MsC

3 Y Y Y N Y N

9 ------- Practitioner
+10 years experience
MsC

3 Y Y Y N Y N

10 ------- Practitioner
+10 years experience
MsC

3 Y N Y N N N

11 ------- Academic
Author of gold set
paper

3 Y Y Y N Y N

12 ------- Practitioner
+10 years experience
MsC

3 Y N Y N Y Y

13 ------- Practitioner
+10 years experience
MsC

3 Y Y Y N Y N

14 ------- Practitioner
+10 years experience
MsC

3 Y N Y N N N

15 ------- Practitioner
+10 years experience
MsC

3 Y Y Y N Y N

16 ------- Practitioner
+10 years experience
MsC

3 Y N Y N N N

4544 Master thesis
Lean security

Master thesis
Lean security

ID Name Category Experience Iteration
Survey Interview GSS

I P I P I P

17 ------- Practitioner
+10 years experience
MsC

3 Y N Y N N N

18 ------- Practitioner
+10 years experience
MsC

3 Y N Y N N N

19 ------- Practitioner
+10 years experience
MsC

3 Y Y Y Y Y Y

20 ------- Practitioner
+6 years experience
Bachelor

3 Y Y Y Y Y N

21 ------- Practitioner
+10 years experience
Bachelor

3 Y Y Y N N N

22 ------- Practitioner
+10 years experience
Bachelor

3 Y N Y N N N

23 ------- Academic
Author of gold set
paper

2 Y N Y N N N

24 ------- Practitioner
+10 years experience
PhD

4 N N N N Y Y

25 ------- Practitioner
+10 years experience
MsC

4 N N N N Y Y

26 ------- Practitioner
+10 years experience
MsC

4 N N N N Y Y

27 ------- Practitioner
+10 years experience
MsC

4 N N N N Y Y

28 ------- Practitioner
+10 years experience
MsC

4 N N N N Y Y

Appendix F: analysis of expert
elaborations
Expert input

Expert
ID

Extracted Type Related to

i have mentioned mindset couple
of times..and also management
support and understanding are
very important.

8

Establish a security mindset L1 Activity

Management support Enabler

Train management on security concepts Design factor
Establish a

security
mindset

Give centralized training sessions/
workshops. Scan all of your
registries (with artifacts and source
code) for vulnerabilities, make
centralized dashboards, reward
the teams who fixes the most
vulnerabilities, share best practices
all across the organization. Build
quality levels for all programming
languages - use the same levels so
all languages are treated the
same.

9
Perform centralised training sessions and

workshops
Design factor

Provide security
training

9
Establish artefacts and source code
registries which are automatically

scanned for vulnerabilities
L2 Activity

Manage Digital
Supply Chain

9 Establish centralised dashboards L2 Activity
Performing
continuous
monitoring

9
Reward the teams who fix the most

vulnerabilities
Design factor

Establish a
security
mindset

9
Share best practices all across the

organisation
Design factor

Establish a
security
mindset

9
Establish a code quality standard for

each language
Design factor

Establish a
security
mindset

to be found at (controls with
regard to DevOps): https://
securesoftwarealliance.org
https://www.norea.nl/nieuws/
6043/studierapport-devops-and-
agile-in-control-gepubliceerd

10

Maybe something around
infrastructure as code /
compliance as code more in
depth. Also container security and
secrets management more in
depth.

13

container security L2 Activity
Manage Digital
Supply Chain

Leverage compliance-as-code Design factor
Performing
continuous
assurance

Container security L2 Activity
Manage Digital
Supply Chain

Implement secret management L1 Activity

4746 Master thesis
Lean security

Master thesis
Lean security

Activity Design factor
Expert
ID

Establish a security mindset Train management on security concepts 8

Establish a security mindset Reward the teams who fix the most vulnerabilities 9

Establish a security mindset Share best practices all across the organisation 9

Establish a security mindset Establish a code quality standard for each language 9

Establishing security satellites (champions)
in the initial push from the current way of working to 'Security to
Left' principle.

8

Establishing security satellites (champions) Should not be forced but discovered. 13

Establishing security SLA's for cloud
providers

I went for yes here because you should have a say in defining
some security controls relevant (which might not be covered by
the SOC2 or ISAE 3402)

8

Establishing security SLA's for cloud
providers

Partly true, there is very little influence in cloud providers. Security
always remains your own end-responsibility, whatever a cloud
provider provides. It does not say "it's them" to handle security
and the SLA protects me. If your data got stolen because of a lack
of security at your cloud provider, no one will give you back your
data...

9

Implement automated remediation Always manually check the results from time to time. 9

Implement automated remediation Not seen this effective yet in practice. 13

Implement automation of software licensing So true of open source software. 9

Integrate security tests in unit testing
Important to focus on critical first, then highs. Consider the teams
needs to have special security related knowledge. Start early on
to avoid bottlenecks when deploying to production.

9

Performing automated run-time testing Start small, extend later on. 9

Performing automated run-time testing
Quite challenging to implement properly when DevOps is not at a
proper level.

13

Performing automated security testing
Security mindset of the team in my opinion is one of the most
important factor in making DevSecOps team successful. Also,
management support is of utmost importance.

8

Performing automated security testing Fail fast when security stuff is not met. 9

Expert input Expert ID Extracted Type Related to

MBSE 14
Leverage Model-baed
systems engineering

Design factor

Performing
security
requirements
analysis

Activity Design factor
Expert
ID

Performing automated security testing
The above should be elements of the Definition of Done. There
are many more controls.

10

Performing automated security testing
Good APIs that can facilitate organizational processes. The
implementation should be easy to understand by developers.

13

Performing automated security testing
Automated testing is better at finding implementation bugs than
design flaws.

14

Performing automated security testing of the
CI/CD pipeline

Also check for naming conventions and design best practices. 9

Performing automated software composition
analysis

(Make use of) Approved libraries 14

Performing automated software composition
analysis

Most critical (end-user facing applications) first. 9

Performing automated software composition
analysis

Process to handle new vulnerabilities that pop up suddenly is
important.

13

Performing automated static testing
Independent justification of whether a false positive is really false
and whether the fix genuinely addresses the cause

14

Performing automated static testing
Ensure code coverage (applications should be tested as a whole,
not scans run on separate modules, otherwise the static testing
will not properly follow flows).

7

Performing automated static testing
Should prioritise the most relevant applications first since this
takes a lot of time.

9

Performing automated static testing Good process is key, build breakers are important. 13

performing continuous monitoring of
application behaviour

as a DevOps team you should be aware of the normal application
behaviour so as to identify any deviations there.

8

performing continuous monitoring of
security controls

Especially in highly regulated environments in which controls
change now and then and in which informal communication is
difficult to track. Formal controls can and should be tracked.

9

performing continuous monitoring of system
metrics using automated tools

Important, but not super high priority since other factors must be
in place first to make this a reality (e.g. automated deployments).

9

Performing manual security testing
When having automated security at a proper level then finally the
value of manual testing can really be of value

13

Performing manual security testing
since it is a very binary answer, i went for Yes. I would say that it
really depends on the criticality of the application and the
customisation that application has gone through.

8

Performing risk analysis Depends on what is considered as risk analysis and scope 13

Performing security requirements analysis Leverage process metrics 14

4948 Master thesis
Lean security

Master thesis
Lean security

Activity Design factor
Expert
ID

Performing security requirements analysis
How to find the balance between functional and non-functional
requirements. Now most of the time almost all of the effort goes
to functional requirements/features.

9

Performing security requirements analysis Leverage Model-baed systems engineering 14

Performing threat modeling It should be a very agile approach 13

Performing threat modeling Quantitative vs Qualitative 14

provide self-service monitoring capabilities
to DEV and OPS

security to the left 8

provide self-service monitoring capabilities
to DEV and OPS

It can prevent escalations and helps the teams to be self-
organised when it comes to fix any issues.

9

Providing security training Very important.. 8

Providing security training Should be hands on. 13

Providing security training

educate teams how to refactor software, educate product owners
this is very important, learn developers how to prioritise (risk
factor versus impact versus likelihood of an exploit, etc). A cloud
native service is not secure by default, learn that etc.

9

Compliance 14

Provide security training Perform centralised training sessions and workshops 9

Performing continuous assurance Leverage compliance-as-code 13

Appendix G: Results of prioritisation
by experts

Aspect Activity 1 2 3 4 5 6 7 8

Delay
Establish a security mindset
across the organisation

1 4 4 2 4 4 3

Effectiveness
Establish a security mindset
across the organisation

5 5 3 4 4 3 4 5

Financial
Establish a security mindset
across the organisation

4 4 3 1 4 1 3

delay

Establish artefact and source
code registries which are
automatically scanned for
vulnerabilities

5 4 3 3 5 3 2

effectiveness

Establish artefact and source
code registries which are
automatically scanned for
vulnerabilities

5 4 4 3 4 4 3 2

financial

Establish artefact and source
code registries which are
automatically scanned for
vulnerabilities

4 4 4 4 2 1

Delay Establish security satellites 4 4 4 2 4 3 4

Effectiveness Establish security satellites 5 4 5 4 3 5 5

Financial Establish security satellites 2 4 2 3 4 2 3

Delay
Establishing security SLAs for
cloud providers

5 5 4 1 5 2 5 3

Effectiveness
Establishing security SLAs for
cloud providers

4 2 4 2 3 2 4

Financial
Establishing security SLAs for
cloud providers

4 4 4 2 4 3 3 3

delay
Implement automated container
security scanning

5 4 4 3 4 4 4

effectiveness
Implement automated container
security scanning

5 3 3 4 4 5 3 4

financial
Implement automated container
security scanning

5 3 3 4 3 4

delay
Implement automated
remediation

5 4 5 3 5 5 5

effectiveness
Implement automated
remediation

5 2 5 2 3 3 3 4

financial
Implement automated
remediation

4 3 2 2 3 4

delay
Implement centralised
dashboards

5 4 4 3 5 5 3

effectiveness
Implement centralised
dashboards

5 4 3 2 4 3 2 5

financial
Implement centralised
dashboards

4 4 4 4 4 4

delay Implement secrets management 5 4 3 3 5 3 4

5150 Master thesis
Lean security

Master thesis
Lean security

Aspect Activity 1 2 3 4 5 6 7 8

effectiveness Implement secrets management 5 3 3 5 5 4 3 5

financial Implement secrets management 3 3 4 5 3 5

delay
Integrate security tests in unit
testing

5 1 3 2 5 1 5

effectiveness
Integrate security tests in unit
testing

5 5 4 2 5 5 3 2

financial
Integrate security tests in unit
testing

1 1 1 3 1 4

delay
Performing automated run-time
testing

5 2 4 4 4 4 3

effectiveness
Performing automated run-time
testing

5 3 3 3 5 3 4 3

financial
Performing automated run-time
testing

1 4 3 5 3 2

delay
Performing automated software
composition analysis

5 4 3 3 3 4 2

effectiveness
Performing automated software
composition analysis

4 3 3 2 3 5 4 2

financial
Performing automated software
composition analysis

3 4 2 4 3 2

delay
Performing automated static
testing

1 4 2 4 4 3 3

effectiveness
Performing automated static
testing

1 4 3 5 5 3 3 5

financial
Performing automated static
testing

1 2 3 5 3 2

Delay Performing continuous assurance 5 4 3 2 4 2 3 2

Effectiveness Performing continuous assurance 5 2 2 4 3 4 5

Financial Performing continuous assurance 3 4 2 3 3 3 3 1

Delay
Performing continuous feedback
from production to development

2 3 3 5 4 5 4

Effectiveness
Performing continuous feedback
from production to development

5 4 3 5 5 5 4 2

Aspect Activity 1 2 3 4 5 6 7 8

Financial
Performing continuous feedback
from production to development

3 4 2 4 5 5 4

delay
Performing continuous
monitoring of application
behaviour

5 4 3 3 5 4 2

effectiveness
Performing continuous
monitoring of application
behaviour

5 4 4 3 4 4 4 3

financial
Performing continuous
monitoring of application
behaviour

4 2 2 4 2 2

delay
Performing continuous
monitoring of security controls

5 4 3 3 5 4 4

effectiveness
Performing continuous
monitoring of security controls

5 3 4 2 5 4 4 4

financial
Performing continuous
monitoring of security controls

4 3 2 4 2 3

delay

Performing continuous
monitoring of security metrics
throughout the SDLC using
CI/CD tooling

5 4 3 2 5 4 3

effectiveness

Performing continuous
monitoring of security metrics
throughout the SDLC using
CI/CD tooling

5 3 3 4 4 3 4 4

financial

Performing continuous
monitoring of security metrics
throughout the SDLC using
CI/CD tooling

4 3 2 5 3 4

delay
Performing continuous
monitoring of security SLAs

5 5 3 2 5 4 3

effectiveness
Performing continuous
monitoring of security SLAs

5 1 4 2 3 2 4

financial
Performing continuous
monitoring of security SLAs

4 4 1 5 3 2

delay
Performing continuous
monitoring of system metrics
using automated tools

5 4 3 2 5 4 3

effectiveness
Performing continuous
monitoring of system metrics
using automated tools

5 2 2 4 5 4 4 5

financial
Performing continuous
monitoring of system metrics
using automated tools

4 3 2 4 3 3

Delay
Performing manual penetration
testing

1 2 2 4 4 2 1 1

Effectiveness
Performing manual penetration
testing

2 5 3 4 4 4 2

5352 Master thesis
Lean security

Master thesis
Lean security

Aspect Activity 1 2 3 4 5 6 7 8

Financial
Performing manual penetration
testing

1 2 2 2 4 3 1 3

Delay
Performing manual security
review

3 2 2 3 3 2 2 2

Effectiveness
Performing manual security
review

4 3 2 2 4 3 2

Financial
Performing manual security
review

1 3 3 4 4 3 2 2

Delay Performing risk analysis 4 2 5 3 4 3 3 4

Effectiveness Performing risk analysis 4 4 5 4 4 3 3

Financial Performing risk analysis 4 4 4 4 4 3 4 3

delay
Performing security configuration
automation

5 4 4 3 5 5 3

effectiveness
Performing security configuration
automation

5 4 4 4 3 5 4 4

financial
Performing security configuration
automation

4 2 4 4 2 2

Delay
Performing security requirements
analysis

5 3 3 1 3 2 2 5

Effectiveness
Performing security requirements
analysis

3 3 2 3 4 3 4

Financial
Performing security requirements
analysis

5 4 4 2 2 3 4 2

Delay Performing threat modeling 3 3 5 3 3 2 4 4

Effectiveness Performing threat modeling 5 3 3 3 3 4 2

Financial Performing threat modeling 4 3 4 3 3 3 3 2

Delay Practice incident response 4 3 4 5 5 5 3

Effectiveness Practice incident response 5 3 5 4 4 3 2 4

Financial Practice incident response 4 3 3 3 5 3 5

Aspect Activity 1 2 3 4 5 6 7 8

Delay Provide security training 1 4 5 4 5 4 2

Effectiveness Provide security training 5 3 3 4 4 3 4 4

Financial Provide security training 1 3 3 3 4 3 2

delay
Provide self-service monitoring
capabilities to dev and ops

5 4 3 3 5 5 4

effectiveness
Provide self-service monitoring
capabilities to dev and ops

5 2 3 4 3 4 3 2

financial
Provide self-service monitoring
capabilities to dev and ops

5 4 4 4 2 1

Delay Securing the CI/CD pipeline 5 4 3 5 4 2 5 4

Effectiveness Securing the CI/CD pipeline 4 4 5 3 3 3 5

Financial Securing the CI/CD pipeline 5 4 3 4 4 3 2 2

5554 Master thesis
Lean security

Master thesis
Lean security

List of figures
Figure 1: Comparison between the typical process steps in waterfall and agile development as
explained by Abrahamsson et al. [4] 2

Figure 2: Relationship between continuous integration, delivery and deployment according to M.
Shahin et al. [5] 3

Figure 3: Mapping of IATF Information System Security Engineering Process (ISSE) to waterfall and
agile process steps 5

Figure 4: Visualisation of the “shift left on security” concept based on the premises of [23] and [27] 6

Figure 5: Overview of design science as defined by Hevner [37] 8

Figure 6: Schematic overview of the structure for this research 10

Figure 7: Schematic overview of the research design 12

Figure 8: Schematic overview of the literature research 17

Figure 9: Screenshot of GSS session 34

Figure 10: Ranking scales used for prioritisation of security activities 35

Figure 11: Map of DevSecOps activities identified during this research 95

List of tables
Table 1: Literature review search results 17

Table 2: Overview of codes used for thematic analysis 20

Table 3: Results of thematic analysis of security activities 21

Table 4: Results of thematic analysis of design factors 23

Table 5: Selection criteria for DevSecOps experts 26

Table 6: Results of contextual questions 28

Table 7: Results on the validation of the proposed definitions for DevOps and DevSecOps 28

Table 8: Results of validation of security activities by expert panel 30

Table 9: Results of validation of design factors by expert panel 32

Table 10: Results of the prioritisation of security activities by the expert panel 36

Table 11: Prioritised list of security activities 89

5756 Master thesis
Lean security

Master thesis
Lean security

References
[1] Tallon, P., Queiroz, M., Coltman, T., Sharma, R. (2019). Information technology and the search for
organizational agility: A systematic review with future research possibilities The Journal of Strategic
Information Systems 28(2), 218-237. https://dx.doi.org/10.1016/j.jsis.2018.12.002

[2] Forsgren, N., Humble, J. (2015). The Role of Continuous Delivery in it and Organizational
Performance SSRN Electronic Journal https://dx.doi.org/10.2139/ssrn.2681909

[3] Martin, F., Jim, H. (2001). Agile-Manifesto Software Development 9(8), 28-35.

[4] Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J. (2017). Agile Software Development Methods:
Review and Analysishttps://arxiv.org/abs/1709.08439

[5] Shahin, M., Babar, M., Zhu, L. (2017). Continuous Integration, Delivery and Deployment: A
Systematic Review on Approaches, Tools, Challenges and Practices IEEE Access 5(), 3909-3943.
https://dx.doi.org/10.1109/access.2017.2685629

[6] Almeida, F., o (2017). Challenges in migration from waterfall to agile environments World Journal
of Computer Application and Technology 5(3), 39–49.

[7] Moe, N., Dings, T., Dyb, T. (2008). Understanding Self-Organizing Teams in Agile Software
Development 19th Australian Conference on Software Engineering (aswec 2008) https://dx.doi.org/
10.1109/aswec.2008.4483195

[8] Artač, M., Borovšak, T., Nitto, E., Guerriero, M., Tamburri, D. (2017). DevOps: Introducing
Infrastructure-as-Code 2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C) https://dx.doi.org/10.1109/icse-c.2017.162

[9] Kang, H., Le, M., Tao, S. (2016). Container and Microservice Driven Design for Cloud Infrastructure
DevOps 2016 IEEE International Conference on Cloud Engineering (IC2E) https://dx.doi.org/
10.1109/ic2e.2016.26

[10] Jabbari, R., Ali, N., Petersen, K., Tanveer, B. (2016). What is DevOps?: A Systematic Mapping Study
on Definitions and Practices https://dx.doi.org/10.1145/2962695.2962707

[11] Ebert, C., Gallardo, G., Hernantes, J., Serrano, N. (2016). DevOps IEEE Software 33(3), 94-100.
https://dx.doi.org/10.1109/ms.2016.68

[12] Rahman, A., Williams, L. (2016). Software Security in DevOps: Synthesizing Practitioners'
Perceptions and

Practiceshttps://dx.doi.org/10.1145/2896941.2896946

[13] Duvall, P., Matyas, S., Glover, A.(2007). Continuous integration: improving software quality and
reducing risk

[14] Beznosov, K., Kruchten, P. (2004). Towards agile security assurancehttps://dx.doi.org/
10.1145/1065907.1066034

[15] Smeds, J., Nybom, K., Porres, I. (2015). DevOps: a definition and perceived adoption
impediments

[16] Technologies, CA. DevOps: The Worst Kept Secret to Winning in the Application Economy: 2014.
http://www.ca.com/us/~/media/Files/whitepapers/devops- the-worst-kept-secret-to-winning-in-the-
application- economy.pdf

[17] Chen, L. (2017). Continuous Delivery: Overcoming adoption challenges Journal of Systems and
Software 128(), 72-86. https://dx.doi.org/10.1016/j.jss.2017.02.013

[18] Mann, A., Brown, A., Stahnke, M., Kersten, N. (2018). Puppet - State of DevOps Report 2018

[19] Elliot, S. (2014). DevOps and the Cost of Downtime

[20] Mohan, V., Othmane, L. (2016). SecDevOps: Is It a Marketing Buzzword? Mapping Research on
Security in

DevOps 2016 11th International Conference on Availability, Reliability and Security (ARES) https://
dx.doi.org/10.1109/ares.2016.92

[21] McCarthy, M., Herger, L., Khan, S., Belgodere, B. (2015). Composable DevOps: Automated
Ontology Based DevOps Maturity Analysis 2015 IEEE International Conference on Services
Computing https://dx.doi.org/10.1109/scc.2015.87

[22] Corman, J., Rice, D., Williams, J.(2010). Rugged Software manifesto

[23] Jiménez, M., Rivera, L., Villegas, N., Tamura, G., Müller, H., Gallego, P. (2018). DevOps' Shift-Left
in Practice: An Industrial Case of Application https://dx.doi.org/10.29007/lh14

[24] Airaj, M. (2016). Enable cloud DevOps approach for industry and higher education: Enable cloud
DevOps approach for industry and higher education Concurrency and Computation: Practice and
Experience 29(5), e3937. https://dx.doi.org/10.1002/cpe.3937

[25] Mansfield-Devine, S. (2018). DevOps: finding room for security Network Security 2018(7), 15-20.
https://dx.doi.org/10.1016/s1353-4858(18)30070-9](https://dx.doi.org/10.1016/s1353-
4858(18)30070-9)

[26] Colavita, F. (2016). Proceedings of 4th International Conference in Software Engineering for
Defence Applications, SEDA 2015 https://dx.doi.org/10.1007/978-3-319-27896-4_17

[27] Westland, J. (2004). The cost behavior of software defects Decision Support Systems 37(2), 229-
238. https://dx.doi.org/10.1016/s0167-9236(03)00020-4](https://dx.doi.org/10.1016/s0167-
9236(03)00020-4)

[28] Tashi, I. (2009). Regulatory Compliance and Information Security Assurance 2009 International
Conference on Availability, Reliability and Security https://dx.doi.org/10.1109/ares.2009.29

[29] Goel, S., Shawky, H./ (2009). Estimating the market impact of security breach announcements on
firm values Information Management 46(7), 404–410.

[30] Sinanaj, G., Muntermann, J., Cziesla, T. (2015). How Data Breaches Ruin Firm Reputation on Social
Media!-Insights from a Sentiment-based Event Study. Wirtschaftsinformatik

[31] Hevner, March, Park, Ram (2004). Design Science in Information Systems Research MIS Quarterly
28(1), 75. https://dx.doi.org/10.2307/25148625

[32] Recker, J. (2012). Scientific Research in Information Systems, A Beginner's Guidehttps://
dx.doi.org/10.1007/978-3-642-30048-6_1

[33] Wieringa, R. (2014). Design Science Methodology for Information Systems and Software
Engineering https://dx.doi.org/10.1007/978-3-662-43839-8_1

[34] Bobbert, Y. (2017). On Exploring Research Methods for Business Information Security Alignment
and Artefact Engineering International Journal of IT/Business Alignment and Governance (IJITBAG)
8(2), 28-41. https://dx.doi.org/10.4018/ijitbag.2017070102

[35] Bobbert, Y., Mulder, H. (2013). Group Support Systems Research in the Field of Business
Information Security: A Practitioner's Viewhttps://dx.doi.org/10.1109/hicss.2013.244

[36] Bruce, C. (1994). Research students' early experiences of the dissertation literature review
Studies in Higher Education 19(2), 217-229. https://dx.doi.org/10.1080/03075079412331382057

[37] Hevner, Alan R. (2007) A Three Cycle View of Design Science Research Scandinavian Journal of
Information Systems 19(2)

[38] Nowell, L., Norris, J., White, D., Moules, N. (2017). Thematic Analysis International Journal of
Qualitative Methods 16(1), 1609406917733847. https://dx.doi.org/10.1177/1609406917733847

[39] Linstone, H., Turoff, M., others, . (1975). The delphi method

5958 Master thesis
Lean security

Master thesis
Lean security

[40] Saunders, M., Lewis, P., Thornhill, A. (2007). Research methods Business Students

[41] Okoli, C., Pawlowski, S. (2004). The Delphi method as a research tool: an example, design
considerations and applications Information & Management 42(1), 15-29. https://dx.doi.org/
10.1016/j.im.2003.11.002

[42] Jaatun, M., Cruzes, D., Luna, J. (2017). DevOps for Better Software Security in the Cloud https://
dx.doi.org/10.1145/3098954.3103172

[43] Jaatun, M. (2018). Software Security Activities that Support Incident Management in Secure
DevOpshttps://dx.doi.org/10.1145/3230833.3233275

[44] Oyetoyan, T., Cruzes, D., Jaatun, M. (2016). An Empirical Study on the Relationship between
Software Security Skills, Usage and Training Needs in Agile Settings 2016 11th International
Conference on Availability, Reliability and Security (ARES) https://dx.doi.org/10.1109/ares.2016.103

[44] Carter, K. (2017). Francois Raynaud on DevSecOps IEEE SOFTWARE 34(5), 93-96. https://
dx.doi.org/10.1109/ms.2017.3571578

[45] Torkura, K., Sukmana, M., Cheng, F., Meinel, C. (2017). Leveraging Cloud Native Design Patterns
for Security-as-a-Service

Applications 2017 IEEE International Conference on Smart Cloud (SmartCloud) https://dx.doi.org/
10.1109/smartcloud.2017.21

[46] Myrbakken, H., Colomo-Palacios, R. (2017). DevSecOps: A Multivocal Literature Review 770(), 17-
29. https://dx.doi.org/10.1007/978-3-319-67383-72

[47] Derksen, D., Neggers, D., Onwezen, D., Zelen, S./ (2018). Agile Secure Software Lifecycle
Management Secure by Agile Design

[48] Tuma, K., Calikli, G., Sc, ., ariato, R. (2018). Threat analysis of software systems: A systematic
literature review JOURNAL OF SYSTEMS AND SOFTWARE 144(Acm Sigplan Notices 49 6 2014),
275-294. https://dx.doi.org/10.1016/j.jss.2018.06.073

[49] Hernan, S., Lambert, S., Ostwald, T., Shostack, A. (2006). Threat modeling-uncover security design
flaws using the stride approach MSDN Magazine

[50] Shostack, A. (2014). Elevation of privilege: Drawing developers into threat modeling

[51] Watson, C. (2012). OWASP Cornucopia Ecommerce Website Edition

[52] Shostack, A. (2008). Experiences Threat Modeling at Microsoft

[53] Rios, E., Iturbe, E., Mallouli, W., Rak, M. (2017). Dynamic security assurance in multi-cloud
DevOpshttps://dx.doi.org/10.1109/cns.2017.8228701

[54] Rios, E., Iturbe, E., Larrucea, X., , ., Mallouli, W., Dominiak, J., Muntes, V., Matthews, P., Gonzalez, L.
(2019). Service level agreement-based GDPR compliance and security assurance in (multi)Cloud-
based systems IET SOFTWARE 13(3, SI), 213-222. https://dx.doi.org/10.1049/iet-sen.2018.5293

[55] Siewruk, G., Mazurczyk, W., Karpinski, A. (2019). Security Assurance in DevOps Methodologies
and Related Environments International Journal of Electronics and Telecommunications 65(2), 211–
216.

[56] Gruhn, V., Hannebauer, C., John, C. (2013). Security of public continuous integration
serviceshttps://dx.doi.org/10.1145/2491055.2491070

[57] Rimba, P., Zhu, L., Bass, L., Kuz, I., Reeves, S. (2015). Composing Patterns to Construct Secure
Systems 2015 11th European Dependable Computing Conference (EDCC) https://dx.doi.org/
10.1109/edcc.2015.12

[58] Fraile, F., Flores, J., Anaya, V., Saiz, E., Poler, R. (2018). A Scaffolding Design Framework for
Developing Secure Interoperability Components in Digital Manufacturing Platforms 2018
International Conference on Intelligent Systems (IS) https://dx.doi.org/10.1109/is.2018.8710510

[59] Diaz, J., Perez, J., Lopez-Pena, M., Mena, G., Yague, A. (2019). Self-Service Cybersecurity
Monitoring as Enabler for DevSecOps IEEE Access 7(), 100283-100295. https://dx.doi.org/10.1109/
access.2019.2930000

[60] Jaatun, M. (2018). Software Security Activities that Support Incident Management in Secure
DevOpshttps://dx.doi.org/10.1145/3230833.3233275

[61] Forsgren, N., Smith, D., Humble, J., Frazelle, J. (2019). 2019 Accelerate State of DevOps Report

6160 Master thesis
Lean security

Master thesis
Lean security

Credits
Image on cover and back page: ID 141352479 © Michal Balada | Dreamstime.com

Image on section one cover page: ID 168373105 © Ah Naeem | Dreamstime.com

Image on section two cover page: ID 157425409 © Vitaliy Pozdeev | Dreamstime.com

Image on section three cover page: ID 27213058 © catiamadio | Dreamstime.com

Image on section four cover page: ID 24701801 © Photomo | Dreamstime.com

Image on appendixes cover page: ID 94173390 © Andrea Simon | Dreamstime.com

6362 Master thesis
Lean security

Master thesis
Lean security

